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PREFACE,

a.

. .

Problems from the sciences that are inje.dtedinto mathematics texts. (to serve as
..

r _ . / \vehicles for theodevelppMent of theory(o as examples for the use of theory) often ex-
hibit the mathematical 'sciences as short-otder menus and applied mathematics as the

.%,

. i .
corresponding cook-book-s. 14. sought to coanierthis in the SMSG 12th grade text

. .
-te.

Cticuluq..In adcfttion to exploiting appiicatiOns to motivate the development of the sub-.
ject and t? illustiate some of its pec)al consequences, E.G. Begle (Director of SMSG),

A.A. Blank (ChairmandftheCaldulus team), and I decided that it would be of interest '
,

. to attempt a systematiC development of applications. As-part of this program, I
prepared one chapter (9. Growth, Decay and Cofnpetition) to.show how essentially one .

6 .
general method of the calculus is used in malty different sciences, and another (15

. . GeometricalAOptics and Waves). to show how different methods of the calculus have ..
4 o .

urthered the development of essentially one field of science.
c ., 6

In the present volume, I have modified:these two chapters to make them independ-
, r 1

4

ept of the original text, so that they may serve' as a math-sylence supplement to other, ..

program's. As such, the present material forths part of the series started by Volumes- , . .

, X and XI of the SMSG Studies' in Mathematics, volumes based on the lectures for high
I. 'school mathematics teachers given by Max M. Schiffer (Applied Mathematics in the

*3
,

High School, Volume X) and by George Polya (MathematicalMetliods initienc9; Vol4

ume XI). In an attempt to provide, similAmotivation for the audience addressed by
o .

Schiffer and by Polya, this volume begins with an introduction suggesting the inclusion.
of math-science material-at the secondary level; much of this appeared in the Calculus'
.- . . ..

11-3; The Scope of Calculus, or in the Teacheys Commentary), 'and in both books it
helpi3.prepare the reader fIr subsequent material.

. . 1 i .

Although this volume consists largely of personal contributions to the Calculus,.
I am very much aware of, the stimulus anti help that I receivedrom my colleagues,

,

particularly from Blank (the "Al" of Chapter 2), and fron F'. L. Elder, M. S.

Klamkin, C. W. 'Leeds III, M. A.4Lintoil, Jr., I. Marx, R. Pollack and H. Weitzner. Lam,,.
also very pleyed to acknowledge that the work would not have ball attempted in any
other env.ironment than that created by Ed Begle and SMSG.''. . '

.... , - .

- Victor Ttversky

TiniVer%ity. of Illinois-at:Chicago Circle ,

Department of Mathematics, December, 19,66
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.b hapter 1
.,

INTRODUCTION

.

V\ "

..

How did you hear about calculus?

How did you fear about Helen of Troy?
. .

'..And have you ypt heard the story about Al?.

The Scope .of CalculAs.

Cilculus....is the study of the derivative and the integral, the relationship between'

these concepts and their applications. 'Tl;e grdat advance which takes the calculus

beyond algebra and geometry is based on the concept of limit. The basic limit iiroce:
dure of tAe.differential calculus is typified by the problem of finding the, slope of a.

curve; the basic limit procectie`of the integral calculus is typified by the problem of

finding-the, area enclosed by a curve. The slope is found as a:derivative, the area as

an integral, and superficially these appear Co be unrelated. fint there is only one
Iscaleulus, derivative and integral

,
are complementary ideas. If we take the slope of

graphof the area function, we are brought back to the curve itself. If we take the

area under the grapb Of the slope function, we find.the original curve again. The limit
;"

concept, in its,guises of,dertvativa and ;integral, together with this inverpe relation

between the twoprovides the'funclainental framework for the calculus.
4 ,

,

The derivative and the integral may be inteappreted geometrically as slope afid.a.s
,area, but these are only two among a wide range of interpretations. We usually begin

With slope and aredln order to introduce parts of the subject in an intuitive, geomet-
rical-way. But although an intuitive geometrical introduction is'aseful and suggestive,
it mast necessarily be based on very familiar steps; The steps are so familiar that
it may not seem that they could lead ultimately to entirely new methods for solving
completely different problem s thw those.encoimtered in earlier courses. We shbuld

therefore stmess that ttie,concepts of derivative and integral are univeral, and their
incorporation into a calculus, a syStem of reckoning; enables us to Solve bignificant

problems in at branches of science. We can set the stage for a systematic develop-
ment of the subject, and emphasize tile universality of the conceits by mentioning lie*
kinds, of prpblems at the very' start of the course. Then in addition to solving problems

_ . ,

that are primarily vehicles for the*develOpment
ref

theory or for thd illustration of
, . .1 , .

techniques, problems which do not begin to §uggtst the full scope of the subject, the
a .

.
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course itself should also ihclude significant applications of the calculus. Problems_
Ifor which.no methods of the earlier mathematical courses are particularly helpful can

.41 r . ,

'be found in very familiar contexts problems that range from the Spreading of rumors
to the colors of the rainbow and their very familiarity serves to emphasizp the
novelty of the methods.

No methods of the earlier courses help answer questions such as: How did you
first heal- about calculus? How did you first hearaboutlielen of Troy?' To, frame
such questions mathematically, we must first isolate some essential features: Some
stories spread like fixes; others die out. if the story is too dull, nobody bothers to
repeat it. But if the story is good, some of the people who hear it (and remember it)
pass it along. Starting from these ideas, how fdr could one get by pre-calculus.
methods?

The same concepts that are basic to the spreading of stories are also basic to the
processes of forgetting and learning'. So many of the facts and procedures we stuffed
:into Bur heads and never used afterwards seem to have vanished. Others, that we met
repeatedly and actually worked with have become so much a part of ourselves that we
feel we have always known them. Our first exposures to these facts may not have
taken, but repeated encounters in different' contexts finally left theirmark. (We take

. -this as the theme of Chapter 2,)

Can we Construct a mathematical description for the way that stories spread -
the way that we learn, and forget? Starting from, appropriate assumptions (the math-.

iematical model) we can discuss some limited aspects of such processes with the aid
lb", of elementary calculus. Such processes illustrAfe a broad class of phenomena whose

unifying features are the basic mathematical models. for growth, decay, and competi-
tion. Besides helping to describe the, 4spreading of rumors, and learning or forgetting,
these -swine mathematicll models serve to clarify our obsertrations of radioactive
decay, the attenuation of sunlight by a cloudy sky, the- progress of chemical reactions,

.the growth of bacterial colonies, or the spread of diseaSe through a city. In each of
'these situations, the essential feature is that the amount of_ some. quantity is changing

(with respect to lime, or distance, or whatever) at a ratP proportional to the amount
already present. A process of this sort can be mathematically described by a cer-
taih type of equation (a differential equation) whose solutions, at feast in the simplest
cases, are combinations of eiponential funetionS. .

Other processes of pature change in a cyclic or periodic way; they repeat in
identical form each year, each second, or every inch. The planetary motions, the

-tides, the harmonious chords of music, the propagation of x-ray's through crystals
even the colors of oil films on water all depend on periodic phenomena.--For such
processes, the rate of change of the rate of change of some quantity is (negatively)
proportional to the quantity itself, and the mathematical Model leads to a different

. .2

I.



class of differential equitconp whose solutions, in the simplest cases, are tombina-,
tions of trigoliometric functions.

With,the calctilus we may also investigate more complicated natural proCesses
that involves combination of growth or decay with some sort-of cyclic behavior. We

'
may also solve much simpler problems. klow much time will it take to drive 300

miles if you start at wspeed of 20 Miles per hour, but increase your speed by 2 miles'
4petliour for each hour of driving? At what angle should you throw a ball for itto

travel as far as possible? In what directions withrespect to the sun are the rainbow i
colors 'strongest?

.

These problems and many others which the calculus solves involve rates of change,

this is the province of the differential calculus. A second broad variety of questions
is 'concerned with totality the summing of small effebts, this is the province a the
integral calculus. By recording your speed during a long trip,. with many accelerations

and decelerations, can'you calculate how far the trip has taken you? If we know how a

single drop o1 ink spreads on a blotter, can we predict what happens if we spill the
40.

whole bottle? Starting with a simple source 'of radiation,. can we predict the total
radiation from an extended distribution of such sources? Knowing the way a single'

droplet of water perturbs a ray of puteght, can we determine hovomuch reaches

us on a cloudy day from the entire overcast sky?

Such summation or integration problems are closely related to,the rate-of-chaltge

or differentiation problems: -the total effects result from an addition'of small
.. .. .

variations. Therefore we do not 'study separately an integral calculus and a .differen-

tial calctilus. We study a calculus cbmprising both differentiation and integration, and
.

each aspect helps Us to understand and apply the other.

'Most of the apNications of calculus emphasize the fects of variation or summa-

tion. "Calculus" was tailor-made to treat such -Except for the simplest
,

problems of this.type, the methods of arithmetic, geometry, and algebra Ire inadequate/
and even for the simpler prOblems the methOds of calculus are the more efficient or /

. . -

the more suggestive.

The calculus was invented to treat problems of physics. In Wm, to the growth of
.

the calctilus, and to,the 'developments it led to in tile larger branch of mathematic
,Icumni as analysis, we owe much -of the progress in the physipal sciences and m ern
engineerini, and-more recently iethe biological and social sejencet. 1'he con pts
and operations introduced by the calculus provide the right language, the righ toolg,
even the right reflexes for the major part of the applications of mathematic ,,to the

sciences'.

3
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I

(1 . ._... aWe Should therefore emphasize applicationsin a general course, not just to show
that calculus provides useful methoil.--anti- concepts for the sciencesobut because so
much of the calculus was developed to 'solve specific problems. We should show the
student how the effort to solve physical probleins led to,,mglhods of the calculus, how
the attempt to make the best use of these methods ancto understand their full scope

t and limitations ledlo the development of the calculus as an independei study, and how
the products of this, study in turn led to deeper insight into the original problems. We

. should show that science enriches Ingthematics'by providing significant problems and
concrete difficulties,, and that 'mathematics enriches science by providing ,solutions of -4;/
problems, and system and organizatien. We'should balance accounts of physical moti-
vations of mathematical proledures with mathematical forniulations of physical phe-. 44:
nomena, and match concept for concept that each has acquired from theother.

... .:
An ideal general course in calculus would maintain alialance of topics and of

.
viewpoints that would meet the requirements of students who will become mathemati-.
claps, others who will become scientists primarily interested in applications, and
still others for whom mathematics will become simply one of many cisep intellectual
experiences 'during the4 education. For the st4dcnt of science, a fluent intuitive grasp
of Math'ematical methods is a primary need, for the student of mathematics, a careful
deductive dehlopment is essential. These afferent viewpoints conflict on occasion,
but filey also suppler9ent each other, and both tin) scientist and the mathematician gain
by adeeper p.ppreciation of both these"views and of their interrelations.

Histpricagy,the replacement of an intuitive basis for the calculus (the method of
infinitesimals) by a Careful logical structure (the method of limits) marked a vital
phase in the development of Mathematics. This phase is far from complete. Weare
Still attempting to learn how to combine intuition in approaching new yRoblems with.
the effective uAe of logic, not only to temper and to_ verify our intuition, butlo permit
generalizations of broader applicability. Today,.Most mathematicians appreciate the
essential soles of Both intuitive%anddductive procedures, not only for creating mathe--
maths, but for learning it and for teaching it, and it is particularly important to stress
their interplay in/introductory courses.

2. Systematic Approaches to Calculus-Science Programs.
.. / .

,,--
.

The primary purpos'e of a modern introductory course in Ca culuS is a systematic
44

developmentof fundamental theory that stresses the novel featur of calculus and
. indicates its relations' to the earlier arithmetic, algebra, and ge metry, ats-well as to

the later analysis. The initial level of rigor Should be appropriate for the students;Y'

and the probleiffs that motivate the development of the subject, and the exercises that
illustrate some of its special consequences or develop manipulative skill, should be

~#rrneaningful to the sfudeits. After some grounding in theory and with some facility in

-0
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techniques, we should attempt some systematic development of applications of the
. .

calculus to, the sciences.
e

To serve up applications only as isolated rirpblems and exercises provides the
student with an indigestible stew of unrelated ingioedients., TQ exhibit the:mathemati-

cal sciences as short-order menus and applied mathematics as the corresponding cook
book recipes is criminal. To shuffle together, menus and recipes and rules, of cookilfg
without mnemonic guides yields ynly an unteachatle and unleatnable mess. When we
teach calculus, let us teach calculus. And when we consider applications within a Sys-

fgmatic development of the basic concepts of th9kalculus, let us attempt to do so in a

. systematic way as concrete.steps in the ascent..
4

There are two different systematic approaches we could follow. We could pick

one gerieral method of the calculus and show how it is used in many different sciences,

or we could pick one general topic of science and show how different 'methods of the
wr

calculus have furthered its-,deN4opment, Because these two procedures are essen-
tially different, and because both are indicative of the. \NA), applied mathematicians and

mathematical'scientists work in practice, we follow both procedures.,

Chapter 2.(Growth, Decay, and Competition) illustrates the first approach. It

howdevelops mathematical models and shows how they are used in va,Elous sciences. To

stress the generality of the mathematics and that the equations are completely inde-
.

pendent of any scientific discipline,,the models are introduced to describe the spread-
, .

mg of stores. The equations are then applied to radioactive decay, electric circuits,

attenuation of sunlight and the color of the sky, propagation of nerve impulses, for-

getting and learning, chemical reactions, and to sociology. This chapter stfesses that
despite the marked differences in the classes of phenomena studied in the various

,
sciences, there are a number of processes that are fundamental,to all. The same .
mathematical structures, and consequently the same underlying,concepts, are 9n-

/
countered again and again in different contexts of nature; The eqtiations are the same,
blethe functions and variables represent different measiitreable quantities with differ-.

ent names that change frog sgience,to science. .
)`r.

Chapter 3 (geometrical Optics and V.'aves)1 Must .0.:tes they second systematic

approach to applicalipns. It follows a sequence of physal concepts (axioms called ./
"laws of nature") and 'shows how various methods of the calculus supplement each
other in revealing,the implicit consequences. 'It starts with very restrictive laws,

weakens them, and thereby generalizes the development, The 'procedure is "qut'si-

.axiomatic." The laws contain undefined terms (as co the axioms of a,mathematical

system), and implicit restrictions on the apsociated observation4 and computational
techniques (essentiallY as in,mathematics where axioms are usually stated in an

. implicit dpntext). The development suggests the heuristic search for first principles,

anti shows that physics, like mathematics, is cumulative; basic concepts Thousands of

,t:>t
5 I (

<,
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years old are first accepted as laws and then exhibited as .special consequences of a ..
more general set of axioms. The chapter considers geometrical 'propagation and re-
flection (tliclid, Hero, caustics, shadoWs, edge diffraction, eikonals, refraction (Snell,
Fermat; rainbows, mirages), energy conservation (Kepler-Lambert), waVes and super-
position (Huygens, Newton, Young, Fraunhofer, Raylei:-gh-Born), Rayleigh's theory for

r.:,

the color of the sky, Fitesnel diffraction and the method of stationary phase, and some,
-

features of the complete mathematical model for scattering.

In the course of Ghapter 2 we introduce many special labels from differelit
sciences. However, these are not essential to the mathematics, and we rarelyelabo-

- rate on them: intend we eniphasizle, that as far as the present development is con-
cerned, they are merely different temporary names for the same mathematical com-
ponents The pritnary aim is to illustrate how one mathemktical model based on

,calculus covers a variety of different phenomena. On the other hand in Chapter 3, me,
seek to present a sequence of physical concepts in a mathematical way (the structured
development of major topics is' ah essential mathlatical feature of this chapter)and
to prov.ido the physical motivation for several mathematical techniques that are basic
to wav hysics. We introduce these techniques.in easy contexts where the resFlts
can be obtained directly,and then apply them (seine in considerable depth) in mere\domPlicatedsituations.

.; ,f'Both Chapters can be fitted structurally in a calculus program, not only tOillus-
trate many eleMentary concepts and methods, but to help provide makation for sub-
sequent developments. The first, which uses only eleinentary prOedures to solve the i
equations that arise, pyovides a.lead-in to a systematic discussion of elementary (lif-t.--ferential-equations Arid techniques of integration (and it serves thigpurpose for Chap-
ter 10 of the SMSG;Calculus); similarly for the second, arta ultiple integrag line ...,

andd surface integrals,' partial differential equations, etC.-,
°. 1

0The two chapters..:on mathematic s,axid. science a,re 'veiy_different, Both- attempt
systematic approaches, but the first uses matherfiatics as the guidnig thread, and tire
second uses science' as the th',read ,The.chapters supplement each other in indicating
the ways th4 mathenintics and science interact, and mays tfg4pst crossing threads of-; .,...,
a fabric. The twoiSpecitic threads we,follow intersect at IlAyleiih(s theory for the

,.,,,,, -
Color of the sky: in tharit9r 2, it is:a special ,case-of a general attenuation-process;

fir' . . . ---.....in Chapter 3, a special' case of a general scattering process, The chapters together'
may suggest that mathematics and science provide the threads that eve structureto

V', .°iv concept of nature. .

.i°
'''-.

, 1 _

;

3 Style, Rigor, Notation.and Ali That:

Parts of Chapter 2 (whichAs a self-contained revision of Chapter 9 of the.SIVISG,,,-.., . ,.
6Calculus) are written in a , relatively light` Vein in an attempt to break the' monotony of ,,-... .

. ,(



the constant iteration Of the basic material. It is easy to read (at least by 12th grade
students), and the model foK story spreading picks up the threads of Section Li on

.....,- 7 ..

"How did you hear about calculus? How did you hear about ielen of Troy?. . ."; ad.

When we convert, the equations to a modetfpr forgetting anti memorizing isolated facts

we pick up other threads. About half of the application-a mentioned in Section 1.1 are

covered in the next chapter, and many a the others are covered id the'final chapter.
/ . e

The sizb of the space or the,,pomplexity of the equations allottedlo the differW dis-
4. .,

,
ciplines touc,hed on in Chapter 2 is not meant to correspond to their importance or to

. ..
the writer's preferences (except fkr, story spreading). , .

. - . .

If Chapter 2 represents a set of hors d'oeuvres with a common lavor,en Chap-
,

, - , e
ter 3 (v.hiCh is much hardei)' repres6nts a substantial dinner with a structured se-

r"
quence of dishes. T1-.s material (in somewhat plfferent form) was initially assembled

to provide the mtroductorylectures fof the writer's graduate courses in Scattering
Theory in the Mathematics Departments of Stanford University and of the Technion-
Israeilrnstitute of Technology. The different backgrounds of the students (mathemat-

rics, pij.sics, and electrical,erigineering):callerd for a general elementary survey to

introduce fundamentat conceptsand terms and this' also served to provide' notivation

foe the mathematical model oi scattering, for considering certain classes of Problems,
and for the develoimient of both analytic and heuristic procedures. The present' version,

.
Chapter 3, is in genera' more elaborate; it%was amplified initially to serve as a larger

vehicle for calculus teC iques, (as/Chapter '15 of the SMSG Calculus), and Shen revised

to make more self-co H final portion ofvSection 3.9 is largely a

*top-gap for a developm nt t should lead into Green's theorem, Maxwell's equations,

the acoustic sequatiOns, and Schrodinger's equatiOn.
e

Chapter 3, which attempts to give an individual esthetically complete picture of a- /
.......

portion of wave physics, ishiridered because it bas only 'a quite liniited number of ..

physical concepts. and mathematical methods available for the development. We pro- V
..IP- . .

'teed heuristically in some capes (sometimes the rigorous procedure is mentioned
parenthetically), and in other cases we visualize experiments and anticipate refine-

mentsments in attempts to prkyide
.
some substitute for onthe intuition with first

..
comes w

d experience. It is hard to be both-simple and honest, and tb avoid-ilsing implicitly
e more complete results that are aVailable. Attempts have been made to weed ou/t

.. e ,
blunders and oversights, but tWorms of various sections are still only provisional

. .
versions of what the writer would like thern'to Ie. In any case,iniuch of the mathe-
.matical development is informal, and some discussions,,(probably many morethan

-,../ .
intended) are nO.,more than suggestive.

As for notation, the following warning for the writer's'matjrial was included (by
--.. ° ..,_ .

another member of the team) in the Calculus: Teachers CommentarY (p. 655):
. <

1
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I 12 '

7 '

y.



.

"In-scientific usage there are often notational ambiguitlies which we have not
_ 4eliminated. When eye say N is a function of t we mean that there exists a function

t N, not that N. itself.is a function. Careless paraphrase of this expression
leads to the use of N(t) for p(t), a pailicularly bad but commghnotation in science.,

'While at first encounter, such ambiguities may distress the student, he nay take' j,
comfort in the realization that comprehensio'f of this and future scientific material

.
precisehe ray road can anbe enhced by less-cumbersome if less notation.".

A leas specifitlic-ning on notation that is also appropri
late I. Marx and berturlied by the wstriter in 1964:

to was written by the
. /

/- . / .
"When a functibn f is defined by a fornu9a such as f(x) -7. xZ(7A ,-- 4x) /we, distin-

guish ,-between the function f, an assignment pf values to all xin/the domain of f, and
the values f.,(x),, the numbers assigned. Sinliiarly, in7leometryive distinguish bietween.. . ./

/

a point P an the coordinates (3,-2) of the point, a d'betiveeh acurV C and the
. ,equation (x 4- 1)2 = 2(y -1! 2) of the curve/ However, for brevity and where confusion

is unlikely, 4e shell Omit certain word, (which s uld be included for mathe atioal -
/,

accuracy) with the Understanding that are elicit. We shall shorten -11M
. - -

tion f(x) = 'x2(72 - 4x)'; 'the point A

and 'the curve _C-"With equation
,

tion with values f(x) = x2(72 - 4x)1 o 'the
P with coordinates (3,-2r. to 'the point' (3,-2)'
(x + 1)2 = 2)' to "'the curve (X -P ,1)2 7=-2(y - 2)'. In 92ading such phrases, we keep
in mind that the matheniaticaIR6ce and its esentatiOn by a formula or set of num-
bers are quite distinct: the repre7Ltation used to replace the object in order to

. ./make -the material easier to read/ Of ours Such alilreviations are usually used,

conversationally by professional 'mat emat ci.ns, but they avoid them when they,write
for mathematics journaM:- the/
(wIliCh, would make the article

Words (whIch makes the attic

4. CollateralReading and-
,

Those who may not yet [have re
.,

series should read the excellent andr

qt by putting in all the extra words

readable), but,by leaving out alinoAall, ,

onally unreadable)." -3

preceding books of the SMSG math-science
.

ly volume13y
.... .Y i

.
lax M. Schiffer, Applied Mathemati s riffle High School, Vol. X of SMSG Stud4 in

Mathematics, 1963; ',..

.
i I

-- .
George Polya, Mathematical. Methcqs i Science, Vol. XI of SMSG Studies in Mathe-

matics, 1963.

Part of the following disctissiots,of ot)

on Volume X (which assumes no cal tilu

ferential equations). Both volumes a
insight they convey,

a

r

,?

lation, growth and Euclidean optics is based

and'uses difference equations instead of dif-
markagle for their content, style, and for the

4,
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Practical erythingin the following chapters is included in Calculus, Sttident

Text plus Teachers Commentary (SMSG Calculus Team, Chairman A.A. Blank),
. ., i

7
SMSG, 4966. .

. .

16-me of this text's alternative versions of the present material may well prove
more palatable, and some,of the results that are simply stated in the present volume
were assigned as'problems in the CalculusA%ith worked solutiOns included in the

Teachers Commentary. This text-also includes H. Weitzner's Chapter on mechanics
,and oscillatory phenomena, Many additional problems that extend the utility of the

present chapters, and much additional material of interest to math-science programs.
\\,

Many of the physics topics touched on in Chapter 2 are covered in a good general

college text on'khysles that uses calculus:

. F.1.N. Sears and Mark W.

.° Xass., 1.952.

More . i
. -

0
More results oirr-a0ioactite disintegration are given by,
Henry Seurat, Atomic Physics; Rinehart and Co., Inc:, New York, 1946.

- Chemical .reaetions are iscussed in detail by
.

S. Glasstone, Ph sical hemist , Ch. XI, D. Van Nostrand Co., Inc., New York, 1940
., t .

The-model f6r learn i;:based on -

-i

H. Von Foerster, Qtantum Theory of Memory, Transaction's a Sixth Conference op

Cybernetics, pp. 112 -134; Josiah Macy, J1%. Foundation, New York, 1956. 4

mansky, University Physics, Addison-Wesley Press, Inc.,

,

The Section on propagation of nerve impulses is based on the work of Blair, and
.

Rashevsky as discussed tly ' .r

N. Rashevsky, Mathematicak,Biophysics, Ch. XXIII, University of Chipago Press, .
t

- Illinois, 1948, if .. .-...-

:.

and the diSctisSion gi 8ocCology'i'vas rived from
, . ,, 3-.,vr

N. Rashevsky, Mathematical Theory of Human Relations, Principia,Press, Indiana,
,

-So a '._.1947 \
As for Chapter 3, an ekciting, non-mathematical book on natural visual phenom-,

ena'is that by
o

M. Minnaert, Light and Color in the Open Air, Dover Publications, Inc., Mew York,

.. 1954,
.,

.. .
--alie-4

. .
and a' detailed histo'rical dealopment of optics is given by

- i.
. t

.:. Ernst Math, The' Principles of Physical Optics, Dover 'Publications, Inc., NewY,ork;l''.
j6542

r .

.
c

9
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A good general ollege text Olsgeometrical and waye optics is
aF, A. Jen,kins d H. E. White, Fundamentals of Optics, McGraw -Hill Book Co., Inc.,

New Yor , 1957.. .

- ,
A detailed tilscussion of the wave fronts for reflection from a concbve hemispheYe is
given by. _

R. W. Wood, Physical Optic$, p. 54ff, The MacMillan Co., New York; 1934.

Detail d discussions' of venous aspects of wave phySics are given by

R. B -Lindsay, Meclianrc-4.1:Racliation, McGraw-Hill; gew 'Dark, 1960:

Ph tographs of the causilS ()fledge waves (or edge rays) are given by

J. Coulon and G.'G. Becknell, Reciprocal Diffraction Relations Between Circular and
Elliptic-al Plates,P4sical Review XX, pp. 594-600 (194); An Extension of the
Principle of the Diffraction Evolute and Some of Its Structural Detail., Physical
Review XX, pp., 474112 (1922).

The discussion of Rayleigh scattering is based an paperq number i?.nd 247 of
Y.

Lord Rayleigh, Scientific Papers, Dover Publications, Inc., New Y-4.1Z14.4.

The extension of geometrical optics to diffraction and to other "ph ?ical optics"
. pheriomena is given by J.

_ J. A. Keller, A Geometrical Theory of Diffraction, pp. 27-52, Symp. Appl. Math.
'Vol. 8,. Amer. Math. oc., Providence,11.I., 1958.

44'Intrpductory discussions to mathematical aspects of wave phe so ei 4nvolving more', a
than one scatterer are included in

T. Twersky, Multiple Scattering of Waves and Optical inienos ena,4Jcurnal of the
Optical Society of Ancierica 52, pp. 145-171 (1962)

in particular, Section 1.i on scattering by two small obstacle .could be read after the
discussion of non obstacle in Section 9 of Chapter p: H

,

-
. paa- .

1

.
i - .

.
.
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G ROWTH, DECAY,DECAY, AND COMPETITION

se. Ss Os es

\ '.. , .

1,' Introduction._ ..;... .7*/ 4-.41
4.'''S

We recognize
-------r'

that ,the
t
mature areasof oday's sciences have Undergone lo g

, / .. / . ,

mstorical 'development to reach their pre nt systematic deductive stage. T ere-. . -..
have bee earlier stages of observation d classificat of superficially r lated/ i .

phrom na, of measurement and the collection of data,. of seeking detailed nterrela-
.

tions, f isolating essential factons;of creating new concepts to link the ore obscur

.mter elati
t's,

of proposing "laws of nature" to summarize and general e observa
s

N.: ,
tion sting such laws to dete'rmine,the class of phenomena to whi they appl

--St
' of more greral more abstract laws, and of predicting less bypu,s

y . ph nome a. Cycles' of observation, speculation, and Verification Ma our atte pts

atize our knowledge of nature. We vploit yesterday's kc'ence td inv ni
. 1

day!sttools to di hover the science of tomoirow. f/

1
/ ..,

Mathematics plays its role oif every stage of the de;relopme Cof 'a scieuge- into a. "___

+ ,deductive system -7 from the initial classification Of related' phenomena, to the sea z ht ...:,--
1 . 1 I

_

forthe least number of fundamental principles on which they depend from the estab-
t

. .
lishment of laws of nature which serve essentially at axioms for a deductive systeM
to the unfolding of the consequences implicit in such mathematical models of natural

,phenomena. Snienbe deals Atia phenomena with observations, predictions, and
andexperiments on nature. Special areas of science require special,,equipment, and ,

: .,.. .

Special nvq,saxernent techniques. All areas,require mathematical thinking, Mathe-
odels. .0Matical toolS,'and mathematical nl

.,
.

, .
1 the,sciences, from astronomy to zoology, u4/mathematical models for corn-

pit d'pheiloinena obseryed in nature. To construct a model, w isolate the'effects
*

that appear to be fundamental, rd we define relevant 'variables, rameters, and

functions. As suggested by oUr observations and measurements, we seek appropyiate
equatio.ns for the dependence of the functions on the essential_variables; fhr complete-

_

ness, we may have to introduce auxiliary conditions that specify, for examOle, the
initial values ,of the functions and,:of the variables at he start_of 'a_ process. The

6 ,.,3,...."`
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e

solutions of the equations subject to-the auxiliary restrictions may then be compared,
with additional measurements to determine their dom'ain of applicability in nature.

We make observations, We create models,'we make predictions; we make more
observations, more models, more prediPtions, we day-dream and jump to 'conclusions;
we seek to verify our guesses, and keep the Very few that as the tests. By such
means, by a mixture of measurements, mathematics, and mysticism we-seek to
"understand" what- is going on around us, If we can predict and describe a process
and relate it to analogous processes that we know about, we are content for a while..

Despite the marked differencesin the classes of phenomena studied in the various
sciences, there are it number of processes that are fundamental' to all. The same
mathematical structures, and consequently the same underlying concepts, are en--
countered again awatain in different contexts of nature. The equations are the same,
titt the functions and variables represent different measureable quantities with dif- ,

ferent names that change from science to science: The stages and sittings are very
different, and the overall plots vary; but the subplots are routine, the actors go
through the same motions, and only the names of the characters are changed:".

..
:111

Let us consider a class of processes that is commoti to all the sciences, proc-
171.

esses tliat,involve such notions as "growth," "decay," and "competition." We can
construct matheinatial models fO.r. such processes by using either veicy general .4*
abstract mathematical lang-uage;or by4trting the special language pf one of the special
sciences, yo show complete impartiality, we do neither. Instead we use the language
for story telling.

We begin with a story a storS, about stories. Then we show how the same story
o 'can be told again aid again and again ... .

2. 'Ile Spread of a 'Story:, Model,for Growth. ,
Once upon a time (to) I told a number (No) of friends a story about my good

friend Al. Months later (time t) someone came up and asked, "Did you hear the one
about Al?" Since I had"started the whgle business, I didn't have to listen. Ingtead I
asked myself, "libw many [N(t)] people have now heard the'story about

. .

How many people know the story about Al? Good stories spread, and this was a
good one; the number of people that know it grims with time. The number N(t) of

people who know it at time,t should be proportional to the original number Na that
Alik TA

were told the story at time to to the No storytellers that couldn't keep a good thing
to themselves, Ithe older the story, the more people know it. Therefore N(t) in-
creases with the length of time t s to that the story has been circulating, as well as
with the number of people available to spread'it. If N(t) know the story at time t,
how many N(T) know it at a slightly later time 7? Since N(T) - N(t) must vanish if

.
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either N(t) or r- t vanishes, it is plausible to expect that the nUmber.N(r). - N(t) of
-people who learn.the story in the small time interval r - t is directly prOportional, to

both N t) Id to the interval r - t. We accept these ideas as the initial assumRtions,..
V

-
. and e resi them mathematically in the farm

(1) i NH = Noy + A.N-0)(1- - ti , Nft:(1)...4.:No ,. .. 4._!.,

where A is a positive constant -the grolilth coefficient. (Have we left out anything?
.

Sure. We 'ij "(all( about that later.)
.

/Accepting (1) as an adequate,modeljoy the'ehange in N over a. small time inter-,* , .

Jai still does not tell us how N(t)' is related to the initial value No. To determine
this, we let the time interval approach zero and thus replade.:(1) by adifferential
equation, and then integrate over time to obtain N(t) in terms of No.

...

From (1) we have

- (2)

t,

AN(t)..

.

If we discount the fact that friend's come in integral packages (usually) an
-

limit as r approiches ,' we obtain

(3) dt
Equation (3)states that the instantaneou
this is th/ehasic equation for growth. L
A is negative; with A negative we hay

then N is a constant, and there is nothing
elfers nor for us.)

.--

In order to express N(t) explicitly in terms

o to the

ale of'change of N is proportional to N:
er on, we will also consider the case where

sic equation for decay. (If A is zero,

o talk about -neither for potential story-

A

and obt-

(4)

dN (t) from t = t9 toN(t) dt
t = ti ,

N, we integrate
, .

.
fti

I 1 dN(t)Adt = f dt
to

to N(t), dt

' -----='." 4 i
log N(t1) - log N(to) 7-, log [a-05

N(ti) --F,

Expressing both sides of thvequation in terms of expolientials,
F

N(t) = N(to)e
- to)

N oe -t-13

- I

(5) \1
. _ , ._

As a check, we differentikte (5), and Verify direCtlythat
.

-'
l "1' rw , *

._-,-.,

. i. dN(t) % .. *-- -
(6) AN eit(t to/ AN(tidt 0

in accord with (3).

We have fort ,=

13
2 0



For,cdvenience in all that follows we take to = 0 as the initial. time. Thus (5)
becomes

(7) N(t) = Noe
At

, No = N(0) ,
,

where t is the time that has elapsed since the start of the process.
. .

From Equation (5),. we see that N -° co as t J co (i.e., N $creases beyond any
,

bound at-t- spIrViches infinity) which is not realistic fort wiled we know abOut story-

Jer. telling (and other grbwth processes) later on we consider a more realistic model.
The present model is incomplete and should be restricted to moderately small time

R
.. interval t. - A "0 I .

We have told a story about stories to get to (7) Now that we have (7), We recog.:
nize that the result has other interpretations and that the analysis has ether applica-

: ..
tons.' Equation (7) provides an.elementarymodel for the growth of timber and

vegetatio'n, the growtelbf populations (people; bacteria), tile growth of moiley.Au banks,.
(generous banks vhere &by credit the interest fo the capital inst,antaneously), the

. growth of a fiubstancein the course of a chemical react*, and so on. .1r. ..

1/

. ,

We can now answer such .questiOns as:
C, , ,,- . . l

If I tell 2 people the story at t = 0, and if the nuntber N(t) that lows it groWs
at a rate proportional to ¶'A =41 per day, thenhow mucit,N(t) at time t = 7 dais?
The answer from (7) is 2e7 or apprOxiniately 2193; thus more than 2000people know
the story a week after I started to spreadAt,

k

If I deposit po at 5% interest per year and the)bank ad i -s to th or g-
anal amount continuously, tIen when will it reach $20? For

A = `5 it follows from (4) that logo(T.0 )
-100

20
(--.100). t . 'Thus

, i0
0

t = 20 log 2 = 20(0.693 ) :-.. 13.9 years. .

In the following we refer to an equation, say (3), of this section by writing (2:3);

<

to

to' the problemlq radioactive decay. bifferent radioactive substances disintegrate at
different rates corresponding to different valtles of the decay coefficient A. It is con-
venient to express the coefficient in terms of the half-life of Me substance, the time

etc.

3. Radioactive Disintegration: Decay witli'Time.

The same considerations that led us to our ;simple model for growth apply,equally

to the ,analoi-OTISYnTedei for decay, (negative growth). 17Ve take nnegatiye constant of )
proportionality (--A in (2:3) to correspond to N(t) decreasing in time, and apply

(1) - -AN(t) c. N(0) = No ; N(t) = Noe -At-

14 2.1

)1

.;
.1
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. (2) ,r- A A A .

a ;

C
,

it takes half of the initial amount of pubstanoe to disappear. (Why not thb whole- life ?)

If p is the half-life, than from (1) we have
. -

N(t) .e-Ar 1
No 2"

so that .
' .

-log
2 z 0.693

Waif of the material No will be lefent:time r,-one-quarter will be left at time 2r, etc:
When will it all be gone? We see from (1) that in order for N to approach 0, we
require that t approach infinity; we hive N ji for all A (all substances) a

.

and this' is why the wholeclife is a useless measure.

Lefus consider a specific example. The half -lift of radium is about 1600 years,
and the corresponding decay coefficient A is

A
01.660903' 0.600433 per yelar .

1 . e

If we start with some given amount (No) and wait a hundred years, we get.. ,i/ -cr --
isr 5 . . o

log z -0.0 , and consequently N =-- 0.958N0 is the amount left. Thus only 4.2%

disappear s, in one hundred- years.

The basis for applying (1) to radioactivity is statistical, i.e., it holds in the sense
of an average. Although the physicalprocess is governed by probability,. and we can-
not tell when any one atom will disintegrate:: it-is qLtite useful to determine the mean

life-time per atom, We start with No atoms at t = 0 and end up with 0 atoms as
t approaches infinity, and we are interested in the average length of time that an
atom exists.

If ni atoms disappear at time t, , and n2 atoms at time t2 ,

ti < t 2 < tk

ni = N0, then the mean life-time of an atom is the average value
i =1 s k

1

STT, t n
i=1

if the total'nuniberof atoms present in the interval (ti_f ,ti) is Ni , and Ni+1 is_the

numberl)kesent in the interval (ti ,ti+1), then

and the mean b'eCOmes

ni = Ni - Ni4.1
a

A 15

fa
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1+0 ti (Ni Ni.1)
/

i=1

Treating the relation between N and t as though it Nirerecontinuous (essentially as
for (.2:3)), we define the mean life-time as

(3)
1 ,

T = dN = 1
.1.N° t dNNo ,

.
We now seek the relation-between the mean life-time T per atom and the eca

." coefficient A.

(4)

From (1), we have

dN(t) =' -AN(t)dt = -NoAe-At dt

(4); we change the integration variable in (3) to t, and the limits 140 andA to
the CorrespOnding values t = 0 and co:

(5) T = f tem.& .
' 0

To evalnatetherintegral in (5), we regard it as the form f udv (withiti = t and
dv = at) and integrate by parts:.

foed te-Atclt F =
-A -A2 c, A2

. Substituting in (5), we obtain
'

(6)

'thus the mean life-:time:is the reciprocal of the decay Coefficient.

,101/e have a model for simple radioactive ,decay. 'What is left after an atom
disintegrates'? Many things, including sclaughter" atoms which can also disintegrate.

on es talk about some mother- daughter relationgi and discuss the decay of ,

_

both populations.

The simple decay model we have been considering al;o describes essential
features of many other phenomen1-.3dAs another example within the same mathemati-
cal structure, we need chapge only the names of the characters in orderfor theme

-

results tOsapDly to the molecules of air in the room. Suppose that Ncr is the total

number Of mpleculei present, N(t) is the number that have not had collisions by time

t, and that theme,mtfine between collisions isiT. Then , the probability that;No. .

:, '

16.
2 3



4.7

any one Molecule goes for, time t without a collision, dllows directly from (1) and

(6):

NO) e-t/r .
(7Y No.

../
,

\

Same etuation.as previously, but the characte s are now playing different physical,

roles, and, of course, the overall plat is qui different. Were we to continue the .
present story we would require mudh additional structure. if the mean velocity of the

molecules is V, then L =,.,,Tv is callwl tile mean free Path the average distance a
/ .

molecule travels between collisions but this path leads to statistical mechanics
.. /

--..

(which bases the physical properties ofmafter on the motions of molecules) and would

take us too far afield. / 5.

/
, .. .

Electrical circuits offer several examples of decay processes. The, fundamental
cllroles are played by charge q, curi/nt I =

. dt .
and voltage or electromotive force V.

Simple circuit components (capacitors.or condensers, resistors, Inductorsof coils)
,-,

arq pliaracterizedsby cOnstants: cpadity C = q , resistance R = Y , and inductance '
v I i

=
tcli . If a condenser at vol age V disCharge; across a resistor it initiates a

f " / dt

s.

process described by
, s

(8)

and consequently

(9)

dV -V
dt

,

V tca got) = Voe- i =

where log is the initial volt e on the condenser and q0 the initial charge. A current
I flowing througha, circuit onsIsting otasoil and a resistor Satisfies

dI R
(10)

4 v.
and consequently

,
(11)

-71

0

I ioe-at./t.

where To is the initial alue of the current.

41.

4. The Colors of.the Attenuation withDistance. .
-:

The model of Se ion 3 for a process thOt"decays wits time can also bea5plial c

for. processes that_ a enuate (weaken) with distance. Let us relabel the variable-of
(3:2) and call it "dis ance," and write it as "x" to keep the neWitole in view.
thus have .?

4
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dN(xl - -AN(x) , N(0)-= No ; N(x) = Noe"'
44

which we call the attenuation equation.

The attenuation of the earth's atmosphere with altitude is described approzimately
c- ,,by (1) 'With Ziaslho height above the earth's_ surface, N(x) the number of molecules

per unit volume (the density) of atmosphere at height x ;and' No the density itsground.
level. Thefe are different kindA of molecules in our atmosphere With different
masses m, so that we should introduce m as a physical paraileter and write t

(2) N(m,x) = No(m)e-A(m)4,-

.for each constituent: If one introduces more structure into the model., it turns out
that A = ma , where a is independent of m but depends on temperature, and the
acceleration of gravity).

As an alternative setting for (1), visualize a narrow beam of particles incident on
the face of a medium of more massive particles as in Figure d.

. . . .

1

I t 0 o 0
0

O 0

41

. 0 . 741P
N(0) I 4, 0 0 o Y , 0 N(x)

0 0

O

0 0 3C

FIGURE 1-

There are 0 particles per unit volume of the incident beam anckiothing.hcppens to-
them until they encounter the medium that starteat x = 0. Then as the beam pene-

. trates, its lighter parties hit the heavier ones of the medium and.go off in other
directions: particles of the incident beam`are lost to other directioni by scattering.
(Visualize a column of phildren trying to.charge through a crowd of milling adults.)
Thus N(x) , the density of particles in the incident beam at a distance, x within the
medium is less than N0.; this attenuation IS governed by the scattering coefficient per''unit length A A. (For other thprocesses, den y along the beam may attenuate because

, t } s, I.

its particles combine with the heavierconeg Of4 the medium.)
n
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The principal characters in the above are particles loose characters that pAn*
stand for electrons, protons, children, etc. If we now relabel N as energy density

per unit volume or intensity, then the same plot also holds.for light-rays, x-rays,
t -

-y -rays, and alrother kinds of waves meeting appropriate obstacles. For the
particles, we mentioned one physical parameter, the mass m, and spOke,of particles
being scattered by more massive ones.-For waves, the appropriate physical pa-,
rameter is the wavelength x e.g.., the distance betweeriadjacent crests of equally
spaced ripples ona lake. The longest wavelengths associatenvith visible light give
the sensory impression called "red," and they are about twice as long as the shortest
of the Wave}engths associate& with visible "blue." From blue light to ultra-violet to

X-rays to -y-rays we go to shorter and shorter` electromagnetic wavelengths, from rvi
light to infrared to microwaves to radio waves we do.to long lectromagnetic wave-

lengths. We canalso talk about sound waves, water waves ,and even the waves of
"probability amplitude" associated with electrons, neutron , and other fundamental

particles.

With N for intensity, (1) in terms of an appropriate A describesthe attenuation
of a beam of sunlight penetrating a cloud or a layer of fog, etc. We can use (I) to
determine the thicimess of lead shiellis*tO be usedtwith dental x-ray equipment or .

with a nuclear reactor to reduce stray radiation to a tolerable value. We could talk
N

1 '4'... '1/4

. in greater detail on any of the above, but iitstqad let us talk about something more
. - ,

colorful.
.

Let us consider Rayleigh's theory for the color of the sky. ,The. essential feature
'of sunlight is that it is4fade up of light of diffe'rent colors from red to blue (the
visible spectrum) ltkassoci4ed wavelengths Ar to X b such that (approximately)

(3) 1' X. =

The wavelength X of an intermediate coldr (orange, yellow, green) satisfies
Xr > X > X. Rayleigh showed that when a beam of light of wavelength xis
scattered by the molecules of the earth's atmosphere (mainly nitrogen and oxygen),,__
the intensity N(X,x) alOng the beaM is governed approximately by (1) with

(4) A(x)
X

where C is independent of x. (In the chapter on optics and waves we discuss this'
, a

more fully.)

From (4)Jand (1) we have,

(5)

and consequently

A(Ab) 1<= (24)4
Mir)

= 16

19',
A

0



.......,. , s,.
N(Xb 6 x) ''-. TAN x I6A(Xr)x ' [MX/. , X)] 16(6) -,,
No(xb) .ca : , No(A.r)

.... Thus the blue componetirof white light is ,6 times more strongly attenuated than'the
red A beam of 4ite Sunlightseddens-with penetration into the earthts atmosphere
bec5use it loses its blue component more, rapidly, than its red. The blue that is lost
from the sunbeams by scattering 5ives the sky Its blue color in directions away from
the sun. The direct beamsgr,om flit overhead sun are still relatively white because .

6

they have not lost that much blue. The reddening of the diregt beams is best seen
when the suNios low on the horizon and its rays traverse maximum distance through
the scattering atmosphere; the clouds in the path of these rays are bathed in red.
Such colored effects and other scattering phenoxnenkarising from water drops, dust
p,14cles, and other impurities in the atmospheie'al4kere fully discussed in poetry

- .courses.

5. Mother - Daughter Relations: Birth and Decay.

As mentioned previously, when a radioactivettom (the mother atom) disintegrates
it may give rise to a daughter atom which can also disintegrate. Let us now consider
such mother-daughter relations. A

Suppose we have N1 mother atoms which decay At the r'ate

(1)
d/sli
dt -AINI ' N1(0) =1110 .

sari

The rate at WhiCh the mothers deciy equals the sate at whiCh the ;daughters are
created. But the daughte4 also decay on their own: If N1 mothers with birth coeffi-

.

cient ive riselii N2 daughterts with decay coefficient A2 , the rate o change of
the number of daughters is given by

,,:
(2)

dN2 °

dt = A1N1 (- , N2 (0) = 0.

31

Equations (1) and (2) form a pair of simu taneoAkequations for determining N1 and
N2

Let us first consider a limiting case suck.that the mothers decay very slowly
'.compared to the daughters,Te., the decay coefficient orthe first is much smaller
-.than that of the second, Al <<..42. This corresponds, fokexample, to the behavior

for the'pair radium-radon. For radium' mothers, the half-life is approximately _1600
=.01.,

1
years: 'At per year. The radon daughters have a half-life of about 4 days:

1 360 days 1 90
2 4 dabs' year 4 days year

Thui A2 144,000A1,,arid we may take the number N1 of mothers constant for the
P

purpose of obtaining a first approximation of N2(t)

s,)
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Thus we regroup the terms in (2), replace t by -Li; and integrate from t1
to t1'= t,

r

A2
t = -A ft at
0 - A2N2 ; Jo I'

.

subjecto the approxisotion that N1 is constant. We obtain

log K(AiNi = A2N2) =, ,,A2t ,

,
:nfo,

K(Aiks - A2N2) = Tt

d

w here the integration constant K is to be determined from the initial conditionssat
t = a. There are no daughters at t =-0:

tfiqiiat,?.

.1

AiNi

At

Consequently, the number4,of daughters at time t
Nis

given approXimately by

,
(3) N 2 = -A- NI (1 - e-A2t):

'1
AAN1

Alt is very large, then
,- ANi
N2 approximates --2v:- , i.e., the number of daughter atoms

, z.
approaches, a fixed fraction of the relatively inert mother substance. (This is called
long term or secular equilibrium.),What does this mean? It correspcnids, for .

example, to the case Where N2 is a gas (such as radon) in a cloped container, and a
/situation where just as much Nis created (from N1) as is destroyed by radioactive

de ay. The/birth rate'of N2 equals its death rate, so that ---td142 Is zero; our, result as1
, - ,

t approaches infinity in (3) i us the same as that obtained by equaAng (2,) to zero.

Equilibrium correspondto

dR2
(4) dt = 0;.1 N2 =,

'a

I

IV

Before pontinuing the development let us feedback the above to our earlier- life-

cuasion, of electrical circuits (3:8). Equation (2) with ill held constant is also the
mathematical relation for the :Current I in a lielectrical circuit having resistance R,

inductance L; and external voltage V:

(5)

a dI._ V R'
' L I

21



If V is constant, and if I = 0 at t = 0 , then the solution off' (5) for the growth.of
current in time is obtained by,inspection'of (2) "and._.(3):

(6) I _y_
R 1 , ti

`If V = 0 and I = Io at t = 0, then (5) reduces to 13:

N5w back to Mothers and dauglzters, and let theimothers also decay in (2). To

'A- ittake this int account, we substitute. the solution of (1), i.e.,,Ni(t) = Nioe
(.4101and obtain

dN
(7) + A2N2 AiNtoe

We solve for N2 by using eA2t as the "integrating factor." We note that

. #.

d dN, A _t d ,!2t A t
dt

N2e = 2 + N2af e - + AzNz e,2

A t
To exploit this, we multiply both sides of (7) by e 2 to obtain

At A t-A td
Nze .2) = AiNtoe 2

and then replace t by ti and integrate from t1 = 0 to ti = t:

1 - 1)
N2e = AiNio ft 2t1 - Al tl "AiNio (e 2

A t -A t

0 0 A2 - At

Since N2(0) f 0 we-thus haie

into (2)

A1 -A2 t1
18) N2(t) -

2A A Ni°ke e '

whichredices to (3) if. Ai '« A2 , and Ait 0. In distinction to the approximation
(3), the present complete form N2 of (8) vanishes both for t 0 and t .0; consesr
quently N2 must have a maximum at a.specific value of t,

lime differentiate (8) with respect to t we obtain

(8}
dN2 I

Ale + A2e
-A

2
t

dt -A2 - A1 r

This vanisheS, and N2 has a maximum, when

-A t t A (A -I.2)t
Ale = A2e 2

' A = e
2

From the logarithmic form, we obtain,
s. log - logA2

(10) t
At

asthe time-when the number of daughters is largest. The ,maximum value of

gl aughters is N2 = Nioe =
-A2 t

/:Ttoe

-Alt
- A--1-2 Ni as in (4).

22
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6. NetiraI Prdcesies:: Stimulation and Decay.

One methodpf studying the excitation and propagation of nerve impulses is based
on stimulating a nerve fiber electrically. Characteristic measurable effects are pro-

.

__dewed in resOnse to an electrical stimulus V (the voltage associated with a direct.--
current, the discharge of a _condenser, or an alternating current), provided that V is

,
_greater thartithreshold value'Ve the minimum value of V that is just sufficient to-

-A--da.lise-the-effects. A simpleimodgl (introduced'by Blair on the basis of experimental

elata) describes the 'onset of the effecti in terms of a local latency (also called the
^local excitatory function" N(t) such that

\'
dN(t)

dt = KV(t) -,AN(t),

where K is the growth of the latency per second per unit stimuluslnd A Is its decay
_coefficient. Thus the growth of N increases with the magnitude of the's4imulus and
decreases with N. (The functithi N may represent the difference between the con-
centration of an exciting ion at an electrode while V is applied and its concentration
for V = 0.) If N(t) reaches (or exceeds) &threshold valug N., then the nerve
becomes excited (and a characteristic wave of physical-chemical changes with an

associated electric potential propagates'along the fiber).

Ttie simplest.'application of (1) is to the situation

(2) N(0) = ci, V(t) = V = constant ,

which correspond to the application of a constant stimulus at time t = 0. By
inspection of (5:2) and (5:3)She solution of (*and (2) is

(3).
N (II -A)N = - e .

Thus as t - .0, we see that N approaches its largest value Nina. = KV . Conse-
"quently-excitation will occur if ,

(4)
KV

= n ,

or equivalently if the stimulating voltage satisfies

(5)
AN = v. ,

where V. is the threshold stimtlus mentioned previously. (The value V,, is Imo-wn as
the rheobase, the threshold or liminal value of the constant voltage necessary for

excitation.)

AssUming that V > V. (so that excitation must occur), thekthe nerve becomes
excited at the time t corresponding to N of (3) reaching the; threshold value.

(6) = (1 -e ,
y. - Ate

23
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*IL' or, equivalently,

(7)

whiCt is the latent period that
stimulus and the release of exci

. Ve., then te 00; however, t

ment puirses, A more convenie
y = 2Ve:

lapse

atio

between the

if V < Nit
inconveni

sure is the

(8) 9
Jo 0:093

K

stal4ishment of the constant,

o ell value of te existS-k. If
nt ength of time for measure-
al a of te corresponding to

This is known as the chronaxie e lat t time fore excitation for the case of a.
stimulating voltage equal to twice the thres hold $1 e.

What have we been doing in the above? esSen

characters introduced for radioactive decay d sh
parts of biology, physics, and chemistry. Let
development to nonconstant `values of V in (1).vs,

If V is a function of time ,,,we solve (1) in te = V(t) by proceeding 4,

essentially as for (5:7): we transpose AN to the eft side, multiply by eAt to obtain

(dt4 AN)eAt rr
eAt =,KV(t)eAt , integrate th

114

ially changing the names of the

wing how a few simple ideas link

generalize the mathematical

to obtain

(9)

If N(0) = No = 0,, and V ifs. constant, then (9) rseducesiO (3).

If we stimulate the processby dischAging a condenser of initial charge
capacity C ,'and resistance B, then as in (3:9),

(10)- V (t) = (ge -t /CR

\.
N _ -Ate No + K fotV(ti)eA!dti .

let side explicitly, and regroup

Substituting in (9) and integratieg, we obtain for No = 0:

(11)
KqR e- VCR e-At)

(CRA - 1)

which is simply, (5:6 witbagferent labels. Thus the excitation function N has a

q,

maximum when 0

CR ( 1
(12)

..

- El - CRA) log
CRA

)

If the maximum value of N is precisely the threshold value, theft t of (12) is the ,

corresponding latent time from onset of stimulus V to release of a wave of activi4;

.i/., 1
24



nerve. The corresponding initial voltage V(0) = g.-is the Ihreihold_initial
. -

voltage of the condenser for excitation to occur. If the maximum does net equal the
threshold, then we relate the condenser's chaticteristics to the threshold by ,

equating (11) to N. and using V. =- K to eliminate K .

. . - - -- -- -
If we stimulate the'process by a sinusoidal alternating current, then the applied

(13) .t4., ? V(t) = Vo sin-wt-,- ---

,...
voltage is., I

SA:
where Vo is the constant amplitude. Substituting in -(9)Ny-Nr) = 0 we have

(14) N(t) = e-At f t e sin wtidti
0

To evaluate the integral in (14), we regard it-as theloim pray (with
dv = sin cot dt) and integrate by parts:

,At,cos
cot.

feAt sin wt tlt = +4 feAt cos i.4;t dt .
CO

N' "T `-" , '\,\"\ '`..'S \ \ . ,.""ri "... '''

This doesn't look 'as if it will get us anywhere, but let us handle the new integr
again integrating by its (with dvi = cos wt dt): ,

4." ---F----..-- ,
-eAt cos. wt .A At

.

,- feAt sin wt dt = + e sin wt - A2 fe ssin wt dt .
-

.

(.02......,w c4

Transposing the' integral fromhe right-hand side to the left and dividing through by

= teAt and

1 + A2 we obtain(02

f(eAt sin Lot dt = eAt cos wt + AeAt sin wt

eonSequently the solution'of (14) is

KV0
(15) N(t) w + A2 (A sin wt

02 + A2

- w cos wt + we-M .1

The exponential term of (15) is significant only for small values of t. As t
increases, e-At becomes negligible and (15) reduces to

n
(16) N(t) (02 sin wt - w cos wt).

KV4.

A2

This periodic approximation has equally spaced extrema in time, which occur when
-

(17) dN KVow
012 A2 (A cos cot + co sin wt) = 0 ,, - .1(1.6)t = tan-dt 0.)

Substituting these values of4t into -716),, we find-that iheinaxima of N equal

(18i'
KV

Nmax (,)2 A2) 1/2,
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If we equat' Nmsx to tbkthreshold value Ne , then V0 of (18) corresponds to the
threshold valte-Of the amplitude'of the sinusoidal stimulus, say Voe ; howeVer, the

. . result V0e cc co2 + A2 has only very limited validity in nature.

Ste-. A M ore Realistic About Stories: Bounded Growth.
_ -' Let us 'return to our model for the spreading of stories (or of diseases, or of inki -

blots), and introduce more structure. Previously we assumed that the rate of change
.......-fi-

of thenUrnber that knew the story at time t was proportional only to the number
...

-Fsitself: . . .._74. .

.,'
_7_...----

- _________,....,-,...-. ,..1-xmr. -, r 1.2 ,. , °

dN(t) At.

dt
- ...... ye 10.7....7.,..

( 1) ". AN(t) , N(0) = No. -

This is all right as far as it goes,,but it ignores the fact that are is an upper bound
(say Nm) on the number available,to hear it there is-a finite-number of people on

,earth, same don't talk your an some don't talk at all, and most never 'listen.
Furthermore, although we' may tell the same person the same story a dozen times,
each listener sho' uld be Counted only once.

In view of these considerations, we replace (1) by

dN (Nm
Nm

- N)(2) = AN N(0) 7 No ,dt '

where N = N(t) know the story at time t and are available to spread it, and Nm - N
do -not know the story, have good hearing, and are enthusiastic listeners and potential

gossips. Thd factor (N74: N) is the ignorant fraction of the available population.

Dividing both, sides of (2) by Nm, we introduce f = as the fraction that know the

story, and work with' -

(3)
af No

= Af(1 - 1) , f(0) = fo = Nm

a
Our original model (1) gave N - 00as t "aC.3 : What, does the present model give?
We expect thal 1 - 1 as t - 40; i.e.,that eventually everyone knows the story. (Even
this model is far from

.
complete, bu,t at least this kind of result is acceptable.) From

. -

df(3) we see that c-ft- - 0 as f 1, i.e., that f stops changeig when' everyone knows the

story; from the discussion for (5:4) 'we may surmise that cci-T-ft - 0 ast 40, but let
us solve (3) and see the details.

f
From (3), we write Sr

tt+

d l

kt/
- f Adtt, where fi and t1 are dummy variables.'

We decompose the integrand into "partial fractions." Since

3
26
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we obtain'

1 1 1

f(1 f) f 1 - f '

+ ---=--1- df = log ft f
f

, fo, , i og .7-_-pr = log , log ,]
't fo

At.
+ ii J + 0

Thus solving f9r f, we have-

(4) f-
foeAt j

1 + fo(eAt 3.)

If t is small, then the denominator approximates unity and f foeAt in accord

with the simplified model (1). On the other hand if t is large, we rewrite (4) as

(5) f fo + (1 foe-At
f 0

from which we see that f -`1 as t

.., i

The above model indicates some of the essentials but it is still incomplete.
. .

However, it is good enough to show that although you may still not have heard the

4 ;

story about Al (see Appendix), you should by now have heard about the calculus or_

at least about Helen of Troy.

8. Po ulation Problems: G h and. Com etition.

( 1 )

A more general equatio which inclUdes (7:1) and (7,:3) as special cases is

= AN = BN2, N(0) = 140%

This is called the lo:i ics e ation. We still call A the growth coefficient, and we

may call B the braking coefficient because the term -BN2 slows the growth. The
dNequation of unchecked growth, -,71 = AN , permits N co as t , but Equation (1)

does not. What bound does (1) impose bn N? As in Section 7, we see that f = 0

when = BN: the correspondipg value N = A must be'the equilibrium value,

which N' approaches as t

At one time, essentially dti = AN as used as a model for the growth of popula-

tions of different countries, and this led dire predictions as to the fate of mankind,

(last/ of Malthus). Then, essentially (1) was introduced (by Verhulst) and - appropriate
) r ...

,
It 1 .

i.
27
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A.'s and B's for various countries were obtained from their earlier census records;
the projected growth curves were remarkably accurate (at least for ail countries
exce-pt Verhulstts The bufldup of population growth arising from A has
been interpreted as dile to cooperation between people, and the slow-down, associated

with B as due to competition between people Apr limited resources. The competition
interpretation is qUite plausible: if p is the probability that a person, wants a partic-
ular thtni; then '1)2 is the probability that two personl want it simultaneously; if '

N (N - 1)there are N persons, then there are competing pairs, and the total proba-2

132MNSII)bility of competition'is , incorporating the linear term into the growth

term of the differential equation, we may. take BN2 as a Plausible measure of the
c .
'multaneous desire or of the competitive_urge. However, the reason for regarding

as a measure of co6peration is not clear. X probability interpretation similar
to that for BN2 indicates that AN corresponds to N persons acting quite independ-.
ently of each other, this may well be as'close to cooperation as one can expect from 4

a group, and SMSG authors have therefore taken this as the guiding principle for
"preparing their,textbooks.

Let us solve (1) by the, same procedure Nye used fOr (7:3). The steps are essen-
tially the same,.and we get :

N No

1°g log- CN 1 -
A t .

C
A

and consequently

,
(2) N(e) =

NoeAt

1 + No(eAt - 1)-11

tsr, B
If t is smalls then the denominator is approximately 1 + NotB w e , and (2)

redtices to

(3)
t(A-BN) t(A-D)

N Noe = Noe

where D = BN0 is introduced as an abbreviation. Thus for small t, the result has
the same form as for the simple model in terms of the growth,coefficient A - D .
On the other hand, if t .0, then the limit of (2) is 4

B..!
- A Alio

N B = D ,

in accord with the remark after (1)that N = A represents the long term equilibrium
We, .value.

ti
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9. Quizzes and Nonsnse: Forgettin add Learning.
-

The previous sections also provide a simple model for forgetting and learning,

.at lea_st of unconnected chains of nonsense syllables invented.by psytthologists for

.test purposes. Thus (as Proposed by Von Foerster) we consider

(1)
dN

--- -AN +4 BN (Nodt - Ni , N(0) = No,

where No is the initial number of items memorized (dates, telephone numbers, un-
connected theorems, etc.), A is a forgetting coefficient, and Milo is,a. memorization

.
'coefficient. The notion behind (1) is that your head is originally filled with No
"carriers'' of information; some (AN) carriers just lose their information forever;
some (BN) lose informatlkon in the sense that they pass information on to the empty

No - N carriers. of".

Integrating (1) by partial fractions, or'by comparison with (7:1) and (7:2) (the
,present (1) is (7:2) with a new growth coefficient BN0 - A), we write the .solution of

(1) as

"(2)
N(t)_ D - A
No D - Ae-(D-A)t

N(t).The limit of for -t - so, the remembrance R (as defined by Von Foerster) de-
No ..,

47

..
pends critically on the magnitude of If D > A , then 7

...

(

II' D. - A 1 /0
(3) D

- 1 - 57A , lA >
.r

On the other hand, if D < A , then

(4) R = 0, (A 5.
I - ,
Thus the remembrance of things past is zero for 1, and then increases towards

D .unity as - increases from unity.
A

*4

.10. Chemical Reactions: Multicomponent Processes.
.

Suppose we have a chemical substance with initial concentration d'-(gram-

molecules per unit volume) which is reacting in time with something unimportant and

,,plentiful to form another substance with concentration N(t) . The rate of change of

.N is proportional to the concentration of thp original substance at time t , i.e., to
a

C N(t)

dN = ACC - N), N(0) = 0 ,

where N is the concentration of the new substance and A is called the reaction rate.

29
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.

Equation (1), which is known as the law of maps action, is essentially. he special
.1.. case of (51) for Al mucVsmaller than A2 ; by inspection of (5:3) the solution (i.e.,

the concentration ofithesolgtion) ig -4 ,

.
- .

. .

(2) ,, N = C(1 - e-At).
1-

----:-._ , . -

Equivalently, Et liktion (1), is i-shifted version of the simplest decay equation (3:1);
substituting M = C - N in (i), we obtain ,

V.-.= -AM , M(0) = - N((1)14-
4

Which leads directly to (2) for .N = C - M.

FrOm (2), we see that if t = 0, then N = 0 ; if t » co, then N , so that,all of-the original substance eyentnall/ reacts. We may isolate A in the form

(3)
1 C

A I log c - N(t)

which i8 used in chemist* courses to determinb A by measuring C, N, and 1.

a bimolecular reaction, we have two different substances with initial conceT-
trations C1 and C2 which react at a rate determined by A to prLd'uce'a third sub-
"stance,whose concentration is N(t) :

(4)
dN = A(C1 (C2, _
dt N(0) = 0.

This is just another variation of the logistics equation (8:1). The solutiiin can be.
obtained from the previous ones, or directly:

!

f(C 1 - N) (C2 - N) 1_,C1 - C2 J
dN _ 1 r[ 1 1 ,1,,,,

C2 -N -CI -N]-- 'ci r. lOg r. _, ;.-- At i-E,1

`-'2 `-'2 11

C - N

',. -'

where
! , , ... A . de. A, ) A

_ ,

log CI /C2 '

.

K- Cq -C2

'allows from /T = 0 at t = 0. Thus

(5)

and

16)

e'
,

1 . C2(C1 - N)
A = log-t(Ci - C2) Ci(C2 - N), '

c1-cTom
1 - e

N -
1 - ,(Cti/C2)e(C1-C2

)At

fM

The case C1 = C2 = C may be obtained from the limit of (6) as C1 approaches'
4...

C2. Equivalently, we start with

.130 3 7
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and integ ate:

The constant equals K = C '\and therefor"el-

(8) A
1 N isN d2A1'

= N)' 1 + CA

The equation for opposing molecular and bimolecular reactions has the forM

(9)
dN A(C N) - BN2, N(0) = 0.
,at, =

it to a previOus form. Thus ,.eWe do not discuss this case but merely reduce
-introduce

(10)
1 +.KDi -

2
A

B '
K ,= 1 + 4

A
I/ CB- K

A

in.order-to rewrite (9) as

se- dN
(11) = -B(Di N) (1P2 - N).

We now have the form (4) with the previous A, C1, C2 replaced by -B, D1, D2, and
the corresponding may be written down by inspection.

We could gdpn to higher -order reactions of the fdrni

dN
(12). =- (C1 - N)(C2 - N)(C3 - N) ,

but we must finish the siory.

11. Sociology: Th

Now we could

in the previou4411.

e-Erid. . 7 .
.

rehash everything.' We could change the names of the Characters

ations and talk about profound sociological probleins. Instead we
,...,%,,,,,.1 , -

introduce a more general model for the growth o1 populations, one which includes
, .._A ..

practically all of our previous equations as speCial cases, anascarcely talk at all
./ .. :

In Section 8, the growth of a popuration of N individual's was described by
.,-

- 'dN- 4--a-t- = AN - BN2,,,, N(0), = NG,
,.- .

(1)
Y , ,

,...,where A is the growth coefficient* and' B is the br9.king coefficient; Let u now
P ; ,.,

introduce more strUcture. We may write A = a - ft , where a is the birth obeffi-
%

cient Zthe birth rate per individual) and,wherq fl is one of two death coefficients.
. :

. , y
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7-is-fw assume that the population is:Conf. Oa an area S, then we may write the
f")

other death coefficient as i.e., the death rate CSstividual , increases as S

decreases or as N increases (no room to Jive). Thus the total death rate is

+ 71-) N. Using y = instead of B (merely for esthetic reasons) we rewrite

dN s
aN (I) ÷,.1,N)14

A more general model (considered by Rashevsky) is that for the,growth of a
npopulation cosisting of two types of individuals with d

characteristics: The total population is A

(3) N = NI + N2

and Ni and N2 are .specified'by the simultaneous equations

dN1

dt auNi + a12N2 - [i 4-' 71(Ni + N2)JN1 ,

(4)
dN2

_

dt = a2-1N1 a22N2 [P2 ÷. 'Y2(N1 N4 N2,

erent birth and death

`where the a's, p 's and y's are all constants. The ttirms proportional to a repre-
sent the contribulions'of the two groups to the birth rates; the death rates that depend
on yi (with i = 1 or 2),depend not only on Ni , but also on the total population
N1 + N2 = N . The. system of Equations (4) generalizes practically all the other
equations consid&ied previously in this chapter.

We do nothing With (4), but'as a set of exercises you could obtain all the pre4-
-i

vious citations that we considered and that follow from (4) wider suitable restrictions.
Talk about actiVe 'individuals and passive individuals; talk about active and passive
disobedience; talk about social agOegates, freedom., crime, war, propaganda, etc., -
Write a book about it and Call, it War anVeaCe.

What have we tried to illustrate with this chapter? As you apply mathematics to
e various sciences, you soon discoger that at a fundamental level there appear to be

only a few different kinds of processes going on: the same mathematical structure
arises again, and again in different contexts of nature. We have seen that the equal-
iions are the same, and only the names of the functions and variables change from
science to science. The stages and settings are very different, and the overall plots
vary; but the.subOlots are routine, the actors go through the same motions, and only
the names of the characters are changed.

(

V
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APPENDIX

THE STOki/ ABOUT AL

The Director of SMSG has rpled that the story about Al may be disseMinated only

by word,of mouth. k

X
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1. Introduction.

Chapter /3'

GEOMETRICIL OPTICS AND WAVES

There can be wonder and excitement in following a thread of mathematics through

several sciences and recognizing their kinship in the concepts they share. There can
be deeper wonder and greater excitement in following a single scientific thread through
the cuniulative concepts that trace its evolution.

-e
a

14 us start from'"lars of nature" that were iSolated only after long years ofI
observation, speculation, and verifibation, and show how various methods of Calculus

supplement each other in revealing the consequences implicit in these laws. The
particular laws are limited in theirklomains of.applicabillity in nature, and co respond

to suitably restricted classes of observations. As we progress along the scidsufic
thread, we'trace part of the development from the early very spedial laws of geomet-
rical optics to the modern'very general laws that constitute the mathematical model

ler Wave theory. We use optinal terminology (light rays, mirrors, etc.) but the pon-
cepts:We consider areJpasic to light, sound, and all wave physics.

- We start with,,, cry restrictive laws, weaken them, and thereby enlarge the domain

of the subject. The' procedure we follow is "quasi- axiomatic." The "laws" or,"axioms"
t

eki

we list contain undefined terms as well as implicit restrictions on both the observa-
tionaland computational procedures that are associated wifhthem. (The'"toins of a" -

matheitatical systemillso contain undefined terms, and are also usually tated
4

art
e

implici Context, but-the situation is more obvious in science.)
1

We follow a thread that suggests the heuristic search for first principles on the
basis of limited initial data, and the testing of principletcby the new data they predict.

-
-

We show that science, like mathematfes, is cumulative. _Basic concepts hever die, but
-t

t.

are exhibited differently at different evolutionary stages- A two thousand year old
concept that was once accepted as a law an axiom fora deductive developmenf' is
now'a speciaiqlestricted consequence of today's set of axioms. The concept lives net' .

only*within the new laws and as an intrive guide for their exploration, but it still has
a life" of its oWn within.an appropriately restricted clonlain a domAin;whose bOundaiya
is4oday determined analytically.by the new 'laws, instead of empirically. _
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We do not attempt to define "light," anymore than we buld tttempt to 'define "L:"
L is for light, L is for life, L is for laugh, L is part of the ABC of communicating by
eyinbols that represents perhaps man's most profound abstraction. Light is part of ,

thABC of physics.
.

We define neither light, nor ?s various subjective attributes:., we -st-zt with "let
there be light," and introduce various mathematical constructs that delineate certain
Measurable properties we associate with light.:We are aware that you are reading
with the aid of light, and that although this page is at present practically fully illumi-
nated, you can change the qituation by closing the book, You have seen landscapes by
sunlight with no trace of structure, to tfle flood of illumination, but you have also seen
dancing spots of light traced 6y shafts of sunlight on a tree-shaded path, and beams of
light entering darkened rooms through narrow cracksiof slightly open bors; or you
may have become aware of straight line characteristics revealed- in floods of .sunlight
by the shadows that they cast. You have handled light sources such as electric lights)

s,

flashlights, candles, and have seen the stars as distant sources of light. You have
seen'the image of your face in a mirror, and the fractured appearance of things (fin.=
gers; silverware, etc.)'partially submerged in water.

-
.

The most primitive constructs for such situations are geometrical, and they were
.100

introduced by the geometer Euclid (about 300 years before the current era). Euclid
represented light as something "propagating" (travelinealong "rays" (straight lines)
and as being "reflected" (t rah back in a special way) when it encountered a mirror.
A geometry of rays and idea that light travels at different speeds,In different trans-

..
parent materials serve also to account for the "refraction" (breaking or bending) of a .,

ray passing from, say, air to water.
9( . o.

Why'introduce the idea of traveling? The candle that is consumed as it gives forth
light, and the monthly electric bill make clear that something is being Used up to pro-
,/ A.
vide the li;tit. We traeSforra energy from some other form to the form associated.with..,

light, and the rays we Consider are guides for the flow of energy.
iiiikiit 4 '

`41
. .. t

.

h? the next two Sections we use the calCulus only to consider the geometry of -
rays mostly straight A mostlyorays, but also some curved es; familiar effects, but

,

\not necessarily familiar interpretations: we introduce a signed ray fa "shadow form-
ing ray") to account for shadows, and some of the rays may split into many ("diffraction")
to describe some aspects of ivhat occurs when light strikel a sharp edge. Sections 2t.4, ,t,

and 3 deal with geometry, so that we need not mention energy' flow until we associate a
magnitude with a ray (as we do in Section 4). However, for the sake of the physical
content, it should-always be kept in mind that these rays, in some sense, are the direc-

' P
tions for energy flow. In wht sense is energy flow associhted with light? We do not

1 ,
answer this, but merely provide an analogy that is appropriate for most aspects of

.
visible phenomena.

.- n
R )#\ir .

36--
42



pa,

There are two familiar ways in which energy travels: if you and a friend are in' a

swimming pools and you splash him, you shower him with water drops, eadh drop carry-

ing some amount of energy from you to him, alternatively, if you plunge your hand into

the water, much of the energy of the effort travels to him via a wave on the water's
urface. As another pair of examples, you can attract his attention with energy in a

pac ed form by throwing a ball at hirer; or you can reach him with energy traveling

as a sound wave by shouting at him. 3& '
4

Simple observatioris on pi:opagation, reflection, refraction, and scattering of beams
ry

of light can be interpreted, either as energy traveling as a stream of particles or as a
1

collimated wave; the rays (Sections 2, 3, 4, 7) are either the trajectories for the parti-
cles, or the normals to the wave fronts (Section,5). For the more complex phenomena
that we may observe readily, only the wave interpretation is adequate: these involve
,"interference" of light beams (Sections 6, 8, 9). Two beams of light may intersect and

,

produce additive effects iii the region of intersection but then emerge from this region
unaltered in form: streams of waves show this characteristic, but streams of particles
do not in general (i.e., some particles end up going in other d Actions than the original

ones), For still more complex phenomena, some aspects are described more 'simply
by a wave analog and others by a Particle analog: Which is light? Wave Or particle?
Neither. Light is light. However, since we are more familiar with particles and waves

(practically the A and the B of the ABC of physics) we may exploit these better known
entities in learning and teaching about light.

37
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2. Geometrical Optics.

2.1 Euclid's Principles.

Early observations of light sources (siin, star, lamps) and of the reflections of
such sources and.objects in smooth surfaces (water, polished metal) suggested that
many phenomena could be described in terms of two "laws"'of nature. We call these
Euclid's principles of propagation [E1] and of reflection 1E21:

[Ell: light travels along straight lines (rays);
[E2 J :, when a ray is incident on a smooth'plane surface, the incident

ITray, the reflected ray, and the normal to theosurface all lieie in
the same plane, and the two rays make equal angles on the
opposite sides of the normal.; °'r

Figure 2-1(a) illustrates. (E21; it shows the plane of incidence in which a ray
from a.source (S) reaches the observatiqn point (P) via reflection at the intersection ,point (I) on the mirror; the rays are at angles a with the surface normal (II). In'Figure 2-1(b), we see that the reflected ray (I to P) is the extension of the mirrorimage (S' to I) of the incident ray (S to I).

(a)

10.

))

FIGURE 2-1

1
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If a set of rays diverging from a source S is reflected from a plane mirror s in

Figure21(a), the corresponding set of reflected rays appear to originate from
image source S' as in Figure 2-2(b), Thnias far, as the reflected set of rays ,

ected,ray system) is concerned, we may replace the mirror in Figure 2 -2(b) by
the source S' and. reduce a reflection problem specified by [ E21 to a propagation

problem specified by [ El ]. (This image method was essentially introduced by Heron

or Hero several hundred years after Euclid.)

We regard [Ell as defining geometrical propagation in a uniform medium, and.
[ E2 as defining geometrical reflection from smooth planes. These cover the situa-
tions dof Figur 2-1 gad 2-2 as well as more complicated reflection problems :..

,

0

(a)

FIGURE 2-2

(b)

A set of parallel rays incident on a planar reflector as in Figure 2-3(a) is re-
.

flected as a set of parallel rays. If we regard this reflector as consisting of two hinged
planes, and swing onelway from the source as in Figure 2-3(b), then the reflected rays
are said to diverge; if instead, we swing the plane towards the source, then there-

%

flected rays converge as in Figure 2-3(c). In Figure 2-3(c), the 'reflected rays inter-
sect, while in Figure 2-3(b), their extensions "behind" the mirrors intersect; the first
(c) is called a ilea intersection, and the second (b) is called a virtual intersection. In
either case, the reflected rays appear to originate at the intersection.

If we have a.set of rays incident on a.complex reflector consisting of many planar
portions, then we can determine the reflected set by applying [E2 ]. Equivalently, once

we have determined the intersections (real or virtual) of the set of reflected rays we
hav'e reduced the'problem to one, specified by [ El ]. It is of particular interest to
determine the intersections of rays reflected from curved mirrors. But before we
consider curved mirrors, we introduce a more general law of nature than [El].

1
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(a)

FIGURE 2-3

2.2 Hero's Principle.

(17) (c)

Euclid's principles describe the essentials of many directly observable phenomena
(and also suggest applications not found freely in nature). However, the principles are
very restrictive, and their description is ve'ry wAdy. The restriction to plane mirrors
is removed and the description is compressed by the More general principle of Hero:

[H]: a ray follows the shortest path between points:

Before applying [H] to more generalsitization4 than covered by [E], we use the
calculus to show that [E] follows from [H]. Since, by definition, a straight line is the
shortest path between points, we see that.[H] covers [El] directly. Similarly in con-
sidering [E2] we need not discuss wriggly paths. We consider Figure 2-4(a), and, seek ,
the shortest path between S and via a point J on the surface of the mirror.fioni
the start wbtake J in the plane - through S and P that is perpendicular to the Mirror:
any displacement of J perpendicular to this plane will clearly lengthen the component
paths L1 and L2 . We introduce the lengths and angles of Figure 2-4(b) and seek the
smallest value of L = L1 + L2 (as required by [H ] ) and show that this corresponds to
y =a (as required by I E2 ] ).

In order for
Lir

(1) L = Li + L2, = h21 + .VM22 + (d - x)2
:

to be a miinimum for fixed hi and h2, Spd ,J on the surface of the mirror, we require

(2)
o

dt = 0 .

40-
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Thus

J

(a)

FIGURE 2-4

x d-x

./(

dL (d - x) x d x Sin a
dx "/-771. ,/h2 4. - 2 ' 1;1 L2

1 2

and consequently sin y = sin a as in [E21.

sin y =, ,

hz

,

Equation (2) by itself states only that L is an extremum, or equivalently that the
ray path'is stationary for first order variations of L . *ever, since

d2 L cos2 a cos2y+ > 0
dx2 .

.1

we seethat L is in fact a minimum. (Of course Hero did not use the calculus: he used
the image principle and geometry to show that y = a corresponds to the shortest path.)

It is clear from the above that applying [H J to reflection from a point on a curved

surface is equivalent to using [E21 forreflection fr1om the tangent plane at the point) , , 11i t
(and practical applications prior and subsequent to TH ',have been baped on [E2) plus

the "tangent plane approximation:). Figure 2-5(a) shows reflection of a`ray from a
the'

i
point on the concave side of a reflector, and Figure 2 -5(b) shows the corresponding '

_. i_
reflegtion-from,.th-e- convex side; note the relations of the directions. Similarly for a

set of rays incident on a curved mirror", we can construct the reflectedsgt (or equiva-

lently,,
_ . . _ .

their intersections) by geometry-, note that both situations in Figures 2-5(c) and
(d),give rise-to the same intersection point (real for c and virtual for d) ::

. .. .

. , . ...
. ., .

There are reflection situations that are not covered by [ H J but are covered by
..

[ E2]and the tangent plane approximation. For example, if we consider a source AS) ,"°"
A.

anthe_tircurnference a a circle and a diametrically opposed observation point (P),
,Ak

,;4 .k

LLIL_
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(a)

(c)

FIGURE 2-5

(b)

(4)

4

r"" .1' ;-.41

then the geFfetrically reflected ray from S to P via a point I on the circurArence
as in Figure 2-6(a), is the longest of all such paths (as is clear geometrically). For
an arbitrar3 point onthe circumference, we may write SI = SP cos 0 and PI SP sin 0,

Ldso that L = SP (cos ;F. sin 0), and (2) in the form a- = SP (-sin 0

#

cos 0) = 0 gives,
0 =-7-1 = - a ,as in the figure; but for this case

2

d 02
7r= -SP (cos
4

+ sin 0) = -2 SP cos m< 0 ,

Zt;

V °'

,so.thatI., is a maximum. There are also situations of Interest covered by(2) for
-whibh the second de4aiives vanish. For all eugh cases, independenify. of the second

, a

- °I,

'FIGURE 2-6(a)
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derivative, the first derivative of the path length is zero, i.e., the ray path is stationav
for first order variations. To cover all such situations, we replace [H] by the more

o

general principle

[H9: a ray folle4s a stationary pa

We may distingdish two clasSes of curved reflectors and illustrate the essentials
for the case of a concave cylindrical mirror. The simpler class corresponds to a
"small aperture" mirror as in4Figu;e 2-6(b); for this case the semi-aperture of the

A

'FIGURE 2-6(b).

mirror AB/2 is very small compared toils radius of curvature a . If I is the center
point on the mirror, and S and P lie the mirror's normal at I , then fromthe law
of reflection, it follows that to a first approximation the rays from S reflected at all

4

points of the mirror go through the point P such that

1 1
.4.

Sr PI a

In particular if E co, then the situation corresponds to afi' incident set of parall

rays as in Figure 2-6(c),,and we obtain simply

'PI ,=
2

a "
-Thu 2for the small-aperture mirror. all-reflected rays intersect at (the focus).

Arnin/A
/Arr.NIMMSIMWMMI!IW.//tAMV/, Oi

1.1"-Mi!1-i
NO/
*.

(

FIGURE 2-:6(0)
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41t The more general problem of xeflection from a mirror with arbitrary sized aper-, . .. .. . ..ture is illustrated in Figure 2-6(d) for a set of rays from a source on the axis of a

-.FIGURE 2-6(d) L
e

semicircular mirror, Fig-dre 2-6(b) shows only to the situation in the,vicinity of the
axis. If we rotate these figures around their symmetry axis, the situations. correspond
to reflection from portions of spherical mirrors. If the distance of the source from .

the reflector in Figure 2-6(d) becomes infinite (parallel set of rays incident), then the
.

envelope of the reflected rays (the locus of intersections of neighboring rays) is an
epicycloi (to be discussed subsequently); the cusp of this curre-is aat .

, .

.1?

The envelope of the rays is called a,caustic; we may deal with a catisti surface,
a caustic line; or a caustic point; the last is also called a focus. For specific sets of° 4::called
rays incident on specific cur ed refleclors we could determine the caustics geometri-
cally; however a geometrical p oeedure is usually too tedious. Instead, we apply the

. . .calculus to a quite general situation, and determine the caustic that specifies thg re-_
s, .. 4 ,,.. 'flected field for a parallel set of rays incident on a cylindrical mirror.. We restrict

.
cylindrical

.,....
attention to the plane perpendicular to the cylinder's generator, thittllie problem is 9.-

. , > "I essentially two dimensional, and derive the correspoildinVlinecaustic. Since the re-
. .. . .4" '4

flected rays are *gent to the caustic, once weknoW the caustic we specifythe.. .0
- ,. _reflected field by means of [El]. ' n ; 'f, et

(
0 ,: O . -

rb

r o

. s 4,,. *4.. -A f '
2.3 j'Caustics. / ..

Os.
We consider a set of rays parallel. to the x-axis incident on a two-dithensional

mirror. For each incident ray, ire could determine the corresponding reflected ray
geometriCally. Instead,' as the initial step for a subsequent we consider

.
an observation point P( ;, y) on the same Bide of the reflecto'r as the source, and apply
ftI) to relatethe incident ray that strikes the mirror at I(,,77) to the reflected ray
through P; see Figure 2-7. We could specify the point I and the `incident ray that
strikes it in terms of the parameter of arc length along the Curve; however, it is
more convenient to use tilieangle that the incident ray make 44with.the normal at I as

1

zo
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FIGURE 2-7

the parameter, the angle a such that tan a is the'slope of, g. The Length of the inci-
dent ray measured from the yr,axis is ; the lengl of the reflected ray from I to P is

R. = x)2 + y)2 , and its inclinatio to the X-axis is '0.

Tlth total length from the y-axis via I to. equals

(3) L R = + - )02 4: (71

Differentiating, we have

(4) L, = 4' n' -Y) [fA- cos ei II,

-

,,where the prime indicates differentiattoil with respect to q . Irsing.[H1, essentially as

for (2), we equate 14, to zero to obtain

(5)
2 sin 0 cos 0sin 0 2 2_

ltcos 0 02 cost y

Thiis from the chain rule we have

0 :i_ -Cji.
(6Y *4 3

tan, =z # do

Since c-ii is the sloe of the tang nt of the refieelor at the point of incidence, :ill
d dn

. is the slope Of the normal g , an uals tan a . Consequently'
. 1 I .

-f'

-;;[(7)

from which't

(8)

as coul ave been obtain

F-

At
=tang = tan a ,re

*OW

.... A ,

0 ='2a ,

irectly from 1E1 on, inspection of FigUre'2-7.
. . . . r
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The equlon of the reqected ray arising from the rays incident at an angle a with

\

n y = - x)tan O = tan 2a ,
rt

which we rewrite as

(10) g(a) = - x) tan 2a = (7j - y). = 0 .

This specifies the set of reflected rays esirofiding to a set of incident parallel
rays. The parameter a describes not only the curt -of tie reflector [ t(a), 'n(a).14
it also picks out the ray incident at n and the corresponding reflected ray (10) that
reaches x,y. The point of intersection of two neighboring.rays g(a) = 0 and
g(a + 4027,0 , corresponding to'a and a + Aa., is determined by MO = 0 and
g(a Da)

g(a) 0 . In the limit Da 0 , the point of intersection of the,raysDa
falls on the envelope and is specified by the simultaneous equations

(11) --g(TerV 0,- g' (a) = 0 . .

Differentiating (10), we obtain
- .

(12) g1 =, V tan 2a 2(4 -
cost 26'4

and with (7) we *eliminate ta÷ .

(13) : g' .= 1 - x)(tan 2a +
cost 2a

§inp`otail2& tan 'a + 1 - 1" , we reduce (13) to ,

cos?2a
.

. ,....

:i" (14) , -1 ILc3§ffisz-+ x.), ) tg- \- tan a .cost .k,' . .-, I- rx, .,
4 Thus, Since (11).requires g' (a) :--- 0 , the k-CoOtdifiate of the point on the envelope is t.

(15r t 'costa
. .2 tan a '

which we may rewrite in various eqiiiVp.lent forms, e.g., )
\ ..

,

. (16) x = - -- cos 2a"..1
''' -1 .

c 2
. \ ..

We obtain ths,

'

Corresponding y-coordinate,* using (16) to gliminate - x from (10):t ,
,

thus .g = 1221: cos 2d tan 2a - (n - y) 0 , and consequently' I

`<,

(17) y = 2 sin 2a .

F4;.

Equations (15) and (17) ,(from which we-could eliminate a) specify the caustic
curve, the envelope of the reflected rays (the locus of the intersections Of neighboring

0
-
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4 0

rays). Given a specific reflector we can use its parametric representation to elimi-
nate and n , and thereby determine the caustic explicitly. We illustrate'this for two
simple, reflectors, the 'Parabola and semicircle.

, .

Parabola. We consider a set of rays incident on the parabola

.,, (18)
t
712 = ...4rq

as in Figure 2-8. The parametric equations of the parabola in terms of a , where

\FIGURE 2-8

.
tan a is the slope of the normal, are .4

(19) n = 2p tan a , tang a, ,

and conseqhently

77 I

. ,
2p

1 = -Pi
2'tan-a

costa cos2 a .-

Using these expressions for T1 and t' in (17), we have

Alt

, ,.,,
' (21) r y = 2p tan a -' ----:' sin 26 = 2pkan a - sin a) = c, i

SI A . cosia 1

4 4,,
0

1 4 ,
Similarly, we use.the c(frresponding,ekpre sions for and ,4' in (15) to obtiin

_A, . -.... _

1

(22) x = -11.4 ("2.2_ta,___n a \ toos

, c o s a (sine a, + cost a) = -P .. ,

k cos a / krtn a? i 22

1. :.:
,

\ . ..
Thus the envelope of tie reflected rays' is

(23)
-1 ! ? '' ' {,

ft i.e., the focus of the parabola as in Figure 2-9.1The focusing.qoperty of the
..-

1 i , -fr,

- ' g

1

47i "P.*,
l L ( 11

si .. ' =
1

1
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parabola accounts for its Many applications (as telescope mirror, microwave and
sonic "dishes;" etc.) for collecting practically parallel radiation (the rays from very
distant sources),,by reflecting the incident rays to a small approprige detector placed
at its focus. Siniilarly, parabolic reflectors are used for the inverse problem of con-
verting the radiation from a source at the focus into a parallel beam of rays.

FIGURE 2-9

The above example is practically trivial in that (23) could have been obtained by
,

much simpler procedures than the one we followed. Inthe next example we follow
essentially the same proceditre to obtain a far less obvious result.

Semicircle. The parametric, equations of a circle of radius a, for the problem of
Figure 2-10 are

. .
(24)

and consequently

a

n = a sin a , = a cos a ,

(25) = a cos a, A' = '-a sin a,

From (17) we then, obtain for the caustic

(26)

.11

= a sin a - a cos a sin 2a =. a sin3 a ,
2

1*

FIGURE 2-10

54
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I

a sin a cos 2a a: cos ax = a cos a (I. 43i shi2 a)
e . 2 tan a 2

SqUarizigand adding (26) al ckU21), we obtain,

- . 2

(28) a (x2' + y2) = 1 + 3 sine a = 1 + 3(a13 ,
.

athe equation of the eflicycloid traced by a point en a circle of radius a- rolling on the ,

aOutside of a fixed circle of radius I .

The cusp or focal point of the caustic is, at x = , y = 0 ; this corresponds to
g" = 0 , and occurs at a = 0. The rays incident near the center of the mirro. fi 0)

are.known as paraXial rays of "small4erture" mirror theoSy; only these give rise to
reflected rays that appear to originate at the cusp t . [ For parallel rays incident on
the parabola, the entire caustic consists of the point focus; simi arly for a source at
one focus of an ellipse, all reflected rays go through the other foe s (hence the lattel).L./

Virtual Caustics. In the above we considered reflection from concave mirrors; for
such cases the reflected rays intersect and the caustics are real in the sense de-
fined in Section 2.2. Similarly for incidence on a convex reflector'the extensions of
the reflected rays behind the reflector intersect on a virtual caustic. The identical
causticcurve specifies reflection from either side of the micro . Figure 1 shows

the situation for incidence on a convex parabolic reflector, andf Figure 2-12 shows
the analogous situation for a semicircle. Figure 2-13 shawls the geometrical method
of constructing the epicycloidal caustic of the semicircle.

Since the caustic of Figure 2-13 is the. nvelope of the set o'f extended reflected

FIGURE 2-11

rays, it is tangent to all members of the family. From the figure wd see that thedis-
tance from the mirror along the ray extension to its point, of tangency with the caustic
equals -1 cos a. [Without the geometrical, construction, the resultfollows on sub.7

a.
atracting from 2 dos (the total ray extension from cylinder surface to, x-axis) the

9

V
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FIGURE

FIGURE 2-13
1v

-ce
and

, . .
value 1-,-= (the length of extension between caustic x7t:40xis..)siir

a sin3.
2a 2 cos a sin a

Tints peighboting reflectedrays. Of real length R (where R is th%4istance from the..:
.,.,, , se ,Mirror) appear to diverge from a source (their point of interwtion) at a distance

.

\ a% v;R+ -2-( dos, a along thir extension.'
W1 \ ,

: q
1
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Since the reflected rays are tangent to the caustic, we ma treat the caustic as the
evolute (the 1pcus of the centers of curvature) of a s

.
m of curves which are orthog-

onal to the Mays. These curves, the involutes of the caustic, are called the eikOnals
. .. .

or eikonal curves in ray theory; the radius of enrvature at xpoint P on such a curve
'equals-R + t cos a . ThJ rays (the orthogonal trajectories of the.eikonal curves) are
tangent to the caustic and normal to the eikonals, and this provides a geomef ical con-
struction for the eikonals: they are traced by the points of a taut string as it unwinds

° --,_from the caustic.

.

2.4 Shallows.
. .

)
In the discussion of (3)ff we restricted consideration to an observation point P .

lying on the same side of the reflector as the source (the "tit side!' of the reflector).
If we drop this restriction, we obtain an additional sAkion of L' = 0 with L' as *yen

. .
/ifi (4), i.e., ..

,,- , . ®
, . . =

.. .
. -(29) , +10 - L' = 0 if ® = .n. ,

, : .
. . ,, . .

where the,geometry is shown in Figure 2714,. Thus in addition t he geometrically
. . .,, , -.,.. . ''

= .

.40(x, y)

1'1" SPACE oqk SPACE

4 .
. 1

er FIGURE 2'r-14 .
.

I 1 .. ; , ,.. . -helecsted ray shown in i
1.

gktre 2-7, wegee from L' ,---- 0 (i.e., from [H']) that the inci-
dent ray also, gives rise to another ray one. traveling along the'originai direction of
incidence. Were the reflector 'absent'', we would interpret thisray as the incident ray
itself (i.e., the situation of [El]). However,,,we insist on thepresence,of the reflector
and seek a physically significant interpretation ofthe rays cdrrespoodinglo (29),.

'
.-When e interrupt a broaki beam of light by amirror, we notice essentially two

effect's: because of the mirror, there is--not billy sortle light-obServed in a r egio ni:kt
secs outside of the original beam, ft there is a se some lightinissing fpbm a Aegion

c

of space, originally filled by the beam before we ill erted the obstacle. Were We.inter- -

.
"1/4,.(

ested solely in the original], beam, then we might simply say that some 6f the light his

been "bent" from its original direction (reflected) and let it go at that. -1-loweyef in.
ordeeto ultimately specify the full effect ot.the obstacle analytically,'we assign. it a .,. 1 - ..--., - i .more positive role We say that the incident rays'"excite" the., obstacle to prodnee not

a

only the set ofreflected rays Nit also at ofdshadow forming rays parallel to the
- .

I
1 . .., . .

. .
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"missing" incident rays in the dark region of space. It is theselNia' dow forming rays
that we read into.(29); these must cancel the incident rays on the "dark side" of the
mirror to "create" the geometrical shadow. (This idea of shadqw forming rays may
be hard,to reconcile with mental images of the reflection of rays based on a ball
bouncing off a wall. However, were we interested in specifying the total effect of the
wall in the ball;wall problem4 w,e could also do so in terms of reflected balls and

.shadow forming balls.)'

To make the role of the obstruction more explicit (and to set the stage for our
sulSsequent*discussion of scattering), we introduce a symbolic representation for the

NA360'-014,

rays. We represent the effect of an incident ray by Et , of the geometrically reflected
ray by Eg , and of the shadow forming ray by E5. W6 represent the total effect Et
corresponding to a ray Et incident on a reflector as'

e> ,

(30) Et = Et'-+ E:
Eg in lit space

.E =
E$ in dark space.

Thus in the lit space the total effect is Et = Et 4- Eg as shown by the two rays on the
left hand side of Figure 2-14. On the ogler hand in the_ .dark space we have Et =

.Et E$ corresponding to the dashed ray on the, right hand s,i.d%stf Figure 2-14; in

order'that Et represent the physical situation of the geoinetrical shadmy,
order that Et vanish, we-requi're" ,

1; (31) E, = .

We take 1) ad,Wsqpple'mentary assumption to [H'j: the first sOlutip (8 = 2ci) of
= 0 accounts fOr geometrical reflection (and we subsequently determine.a

_ .

tude to be assigned to such rays); the second solution (8 = r) plus (31raccounts for
shadow formation.

, -

The'symbol E in (30) represents the scatteredipart of the total effect Et
Et -; E. This is the, part of 'Et that we may regard as originating at the obstacle to
E!, or as outgoing from the obstacle, *

-
If we consider a system of parallel rays incident on a convex semicircillax-oy;_

linder (or equivalently on a full circular cYlinder);thenthecorrespOnding scatterea ray
`system (reflected pus .shadow forming rays) is as sketched-in Figure 2-15.

- The family of curves perpendicular to these rays is th% corresponding infinite

set of eikonals. Figure 2-0 plus its reflection in the x-axii shows several of. these
carves. Thekcurves may be obtained geometrically from the caustics (she caustic°

.
for the shadow forming rays is the point at x = -03), or by constructing the normals

of Figure 2-15 geometrically, or analytically. We consider an analyticl derivation
in a followitig section. At Larger and larger disances from the scatterer' the eikonals

,
of Figure "2-16 become more and more circular. - '

`.'41



FIGURE 2-15

4

4.

1, FIGURE 2-16

2.5 Edge Diffracted .Rays. . 5"'-4,
- , .

- ' , .,There are addliion'aI sets of rays implicit in Hero's principle, andielr utility, ..,
hag been shown by the iecent investigations of J. B. Keller. In particularwe consider

-:
' sedge diffracted rays arising when ,a ray is incident on a sharp edge (which "break i up"

.,

or "diffracts" an incidert ra35). In order fo motivate introducing such,rays,. let is
review the preceding material.

; ; . ,,, , , ,,,
,

) , : '
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4

We have discussed reflected rays and shadow forming rays, and we saw intim-
nection with the semicircular cylinder that both kinds of rays were required to obtain
i complete coverage of space by scattered rays (or equi,valently to ob6,in clOsed scat-
teredeikonals). However if the scatterer'is a strip as in Figure 2-17(0, such rays

4

FIGU' 27.17(a)

alone do not cover space, which implies that the scatterer's influence is restricted to
the two directions shown in the figure. To construct a scattered bray system that covers
all space, we introduce the edge diffracted rays of Figure 2-1 (b)); these rays. are in-
cluded in [H), i.e., an incident ray striking the edge is diffracteci to P via the shortest
path.

.

FIGURE2-17(b)

From Figirre 2-17(a) and 2:217(b), we see that there are- essentially three different
cases that arise'Tor a fully illuminated strip; these correspond to the three different
observation points of Figure 2-47(c). An observation point at Pi receives two
_ _ .

FIGURE 2-17(c)

54- '6O
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diff7acted rays; P2 receives one reflected ray and two diffracted rays; P3 receives
one shadow-forming ray and two diffracted rays. In a subsequent section we show:that
the magnitude (of energy flow) associated with adiffracted ray is in general much

.00smaller` than the magnitude of the other rays in Figure 2-17(c). If we assume this
result for present purposes, we neglect the diffracted rays in the regions correspond-

,
ing to P2 and P3 and obtain the scattered, ray system of Figure 2-1,7(d); this figure

FIGURE 2-17(d)

shows only the "strongest" scattered ray at each observation point. A corresponding
eikonal curve normal to the rays of Figure 2- 17(d), is shown in Figure 2;17(e), and it
is clear that such surfaces become more circular with increasing distance,from-the
scatterer.

1 ^

FIGURE '2-17(0)`,,,

The various rays of re 2-17 correspond only to the scattered ray, system,
i.e., to the effects in space arisingrfrom something that obstructi the incident rays;
this figure does not take into account that the observation point is also reached by an
incident ray. In particular, as discussed for equations (30) and (31), the incidentrays
and shadow forming rays cancel in the shadow region corresponding to P3 . Thus the
net effect in the shadow Tegion must, arise from the edge diffracted rays as in Fig-
ure 2-18; such effects have been discussed M detail by J.B. Keller. (Bright areas int
the, shadow region of obstacles with very regular edges were first commented on by
Grimaldi, 613-1663) C
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FIGURE 2-18

For present purposes; we consider only the caustic of the edge rays for the anal-
!

ogous problem of a disc. Thus if a parallel set of rays is normally incident on a
circular disc as in 'Figure 2 -19, each point of the edge gives rise to a "full fan of rays"

a

FIGURE 2-19

1/9
,t) ,

normal to the egg; t.that pokit.,An off - axis-observation point receives edge rays.
only from two points of the circumference on the disc, i.e., from theliliametrically*

opposite points cut by the plane containing the observation point and. the disc is axis.
However, a point on the axis of the diic receivesedge rays from the entire circum-

ference: the axis..LS.4 Caustic ,ot the .ecige..ro.ys.,Thus' ..the Center of the shadow-eta

nopnally illumin'ated circular disc* should show a.bright spot, the Arago bright spot,
or Poisson bright spot (as; S-Adicted originally about 1800 via a wave argumenta

7 1'big me 1 ; .

For the circular Elite, the line caustic of the edge rays is the envelope of the
4 -planes normal

.
to the. edge of the disc. For a disc of general shape (an arbitrary

planar scatterer) normal to the parallel incident rays, the corresponding caustic of
the edge rays is a cylindrical surface, the envelope of the planes normal to the edge.
Since two such planes intersectibi.a line normal to the disc, the caustic cylindrical
surface generated by the lines of intersection is also normal to the plane of the disc.
The cross section of the caustic cylinder cut by the plane of the disc (or as viewed on
a screen in the disc's shadow), is the line envelope of normals to the edge in the plane
of the disc;_ it is the evolute of.the edge.
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In particular for an elliptic edge

2L2
(32)

a2 2

the equation of the evolute, the four-cusped curve sketched in Figure 2-20, is

(33) .

2 2 2

(ax)3 (by)3 (a2 b2)3

FIGURE 2-20 I

To derive (33) we write a point on the ellipse parametrically as

(34) = a cos cp = b sing) .
4 /
The corresponding normal through x, y is specified by

, (36)
fi

and thederivative with respect to q) gives

ax by
OP) cos q) TTP a2 b2'

(36) (v)
ax by

cos3 qP asin3 qP
_

0 .

Substituting (36) in (35) to eliminate either r or. sr-, we seeIhat

ax a2 b2

- cos3-q) 17

Consequently the locus 9f the normals is
. ,

a2 - b2 a2 - b2
) a b sia3(38) x = cos3 ,

Eliminating q) from (38), we obtain the required result (33). ( Note that for the geo-

metrically reflected rays we started with a set of lines (the rays), determined their
caustic, and then identified the caustic as the evolute for a set of involutes (the eikonal
curves). For the present case, however, we started with an involute, (the edge of the

, disc) and determined the corresponding evolute, the envelope of its normals (the lochs

of the centers of the circles tangent to the involute, the lochs of the centers of

curvature). J.

O M,

o
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If we visualize an experiment in which we start with a circular disc and gradually

convert it to one of elliptical cross section (or equivalently if we rotate the circular
disc so that it is no longer perpendicular to the incident rays), then on a screen, nor- s,,

mal to the direction of incidence.the bright spot changes to the four cusped evolute of.

the ellipse., Such caustic sections were photographed by Coulson and Becknell, in.1922.

The associated scale factor: In the above we discussed rays reflected from surfaces
and rays diffracted by edges. The edge,rays as in Figure 2 -17(b) are drawn radially
outward from a point on.the line representing the edge, but"the scattered rays of Fig-
ure 2-15 for the, cylinder are not radial. If we visualize the cylinder becoming nar-
rower and narrower we might expect on the basis of our remarks for edge rays that
in the limit the ray system of Figure 2-15 could be represented as a set of radial
lines as in Figure 2-21.

f *
FIGURE 2-21

The situations of both Figures 2-15 and 2-21 are covered by [Ht] , and both cor-
respond to scatteriny a Circular cylinder.' In order to distinguish them we must
associate a scale factor for length with a ray. To do so, we could agsume that in addi-

tion to the gejmetrical property assigned to a ray by 111',1, a ray of light (of a single

color) has an, associated length X that is independent of the. length of the ray
path. IX 'coed then distinguish the two different scattering situations for the cylin-
drical ob tacle of Figures 2-15 and 2-21 as follows: the ray system, of,,,F.igure 2-15
corresponds to a Very large cylinder a » , and the ray system of Figure 2-21
&)rieSi4iideIo"a'Very small cylinder "..a<X7.

The existence of an associated length might haVbeen guessed (from Grimaldi's
experiments on light diffracted into 'Shadow regions) but was not. We show subse=

quently tat the required scale factor emerges naturally as part of a more general
model for such phenomena. We mention the matter now partly in anticipation, but
primarily to stress that the present model is incomplete.

i>

N
6
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a. Snell's Law, Fermat's Princi le.

In the preceding secti
faces, and used [H] to dete
opmentfo .artiall trans are

- .
rays. A transmitted ray does n
ing incident ray, but makes

Figure 3-1); this kind of "

ns-we-consider,pd a set of rays incident onreflecting sur-
Me the reflected set of rays. We now extend tht'clevel-

surfaces and consider in addition a set of transmitted
lie in general along the extension of the correspond-

priate angle with the ray extension (e.g., as in

abr

reak" in the ray path is called refraction.

FIGURE 3-1

Observgions and studies of the broken appearance of a rod partially immersed
in water, and of a beam of light traveling partly in air and partly in water, go back to
Euclid and Ptdlemy (second century of this era), but the complete description of such

.
'effects was first given by Snell (1591-1626). As the appropriate analog of [El for
reflection, we have Snell's law of refraction:

cS 1: Aray incident on the smooth plane interface between two trans-
parent media givesise (in addition to the reflected ray) to a 1,

refracted ray on the other side of the interface. The incident ray,
tie refracted ray, and the surface normal lie in the same plane,

.- --and the two rays are on opposite sides of the Mirniar,'Tfia -Slffe7

of the axIgle (0) that the refracted raysmakes with the normal is
proportional to the sine of the angle (a) of incidenv.

From [ SI, we specify the direction of the refracted ray by,
(1) µ2 sin/3 = pi sin a' ,

or equivalently by

(2) psinf3 = since .

The constants pi , and i.r2 are called the indices of refraction, *and µ =1,1 is called
the relative index, of refraction: The situation is shown in Figure,3-1 for µl < µ2 (as
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t,

r

1,7

4

assumed in all that follows): the ray travels from S to P via a point I on the inter-
face. The µ's b.rb-physical constants which specify the essential physical property,of
the media for the topic at hand, they may be measured experimentally, and we assume
they are known. In particular for light (yellow ligilt) passing from air to water we
have /11

4

We may apply [ 5] to such problems as a point source above onbelow an air-
water interface. In particular the caustic for the system of refracted rays can be
found by the method of Section 2. If we consider a point source under water (, )

3
and the rays for which sin g < 3 , we can show that the virtual caltstic for the rays
refiacted into air is the evolute of an ellipse, and thatthe eikonals are parallels of an

'ellipse. (An object under water, viewed along different directions from above, appears
to lie along the corresponding rays tangent to this virtual caustic.)

.
Ferinat assumed that in a given medium light travels-with a velocity v inversely

proportional to the index of refraction (v = , where c is thec
velocity of light in

:.,

vacuum) and rewrote (1) as

sin a 1.-1

vi ' v2 '(3) VI
c

V2 = .
P2

lig...theri derived (3) from the following minimum principle called Fermat's Principle: 5*
[FJ: A ray'takes the least time to travel between two points.

If the total ray path consi*s of two stra ht lines Li and L2 in two media with
velocities equal to vi ail(' v2 respectively, th n the corresponding travel times are
ti = III with i = 1,2 ; from [F] we see that must be a.,minimum. Fermat's.,vi

princle [F] not only replaces the clumsy [SJ (the way [II] replaced it also .
),- incluAs [H] as14.special case where vi -`4 v-2 4and the Points S and P are on the

same side of the interface.

We now use [F] and the geometry of Figure 3-2 to derive [S] , essentiallfas we
used [H] to derive [E]1 The time taken to go the distance Li -from S to I at a

Livelocity vi is ti = , and, similarly, t2 = is the travel-time between I and Pvi. V.2

at velocity v2 in medium 2. Thus [F]...fetqtiir that

(4) V il? + X2 (d - X)2vi' V2 Vi V2

be a minimum. Differentiating (4) with respect to x and equating the44result to ,
._zero i.e.,

x

viVh? + x2

O

d - x
v2 + (d - x)2

60
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we obtain [S] in the form (1), (2) or (3)V

(5> sin a =
V2

sing = sin's = 1.1 sing . 4\4
tif . . -

,.

: If 1.4 = 1, and S and P are both in medium 1, then (5) reduces to [E]. ,--
t , . *

it is-clear from our dikAission of the replacement'of [H] by [II'] in Section*2,
that AV9 should also generalize [F] by replacing least time by stationary time. Equiv-
alently, if we define the optical path lengthito be !IL, then asilm analog of [H'] view at

'
take i, .

...._ __.... .,, .!, ...., ... .. _1..1_ . * . _- - ., ,,.... J-___,...i.
Vt]:. a ray follays the stationary optical path between points.

Unlike' [ S] , we May use [Ft] and (5) for refraCiii?n at curved interfaces. Thus
we could now consider the refraotion analogs of the reflection problems we considered

/previously. For example, we could determine the caustic for the two-dime ional

problem of a setiof parallel rays incident nose-on along the axis of a convex icir-
.

ele of radius a "capping" a stripy (where .the,semipircle-strip region is characterized
1 1-

by 1.4), or the three-dimensional analog of incidence along the axis of a hemisPherically

capped rod. For this case, the caustic of the rays refracted at the semicircular inter-
.

face can be obtained by essentially the methO'd O the previous section; thg cusp of the

caustic lies on the axis at a distance tta/(A-1) from the interface, so.that e.g., for
= 4/3 the cusp is at 4a. Similarly we can obtain the caustic for the rays that . , C,

undergo,two refractions for incidence on a circle (or sphere); for this case the cusp
is, on the axis at a distance (311-2)a/2(jz-1) from the first interface, e.g., for p = 4/3,
the cusp is at 3a., (Would there be a shadow ? Have you ever illuminated a cylindrical

glass'of water with a.flashlight ?)
2



'
Rainbow caustics. Newten (1719) shoaled that white light could be regarded as made-
up of light of different colors, each specified by a different value of some physical
parameter (say w), and that in general the relative index .of refraction between two
media depended on color, ic = tc(co). Thus a ray of white light incident at an angle a
on an interface may be treated as a set of coi ident ays
being refracted a differencangle S(w)..as 'det rmined by the re pondingindex of
refraction p(w) . Consequently, a ingle ray of incident white light becomes a fan of

0

colored rays ,(the spectrum) on kefraction, the different colors appearing at angles ,;3.
determined by

different colors (w) each

o

.

(6)' sin asin/3(0

4For yellow light incident on an air-water interface we have 1.4, 5; kr the .colors red
4'through yellow on to blue, ii(co) increases through 7, and consequently sfni3(w) de-o,

creases from red t blue as sketche ci in pgure 5-3.

FI.p.URE 373 .

O

Relation (6) is strikingly? exhibited in the rainbow formed by sunlight incident on
-spheridal water drops. In the folloWing Nye use the methods of calculus to determine .

the &ngles of the primary rainbcrTana secondar4rainbow for circular cylinders and
spheres.

p 10-
A ray; incident on a transparent circle such as a cylinder of water` in air) gives

rise to,an infinite number of rays. So e of Wiese are shown in Figure 3-4; initially
We consider the ray p. If a system of.p alleyrays is incident on the cylinder, then
we deal with incident rays making all angles a (fronv0 to 907 with the cylinder's
normal, and to each cqrresponds a different p(a) , We want to show that in the vicinity,

. i ; 4 to c.

. .
. .
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F "FIGURE 3-4

of some. particular value of the angle a(eay a.) the nays ,p(as) twill have a caustic
(willtPlocused"), or equivalently that the angle of emergence of 5 hast stati9rY

\A

value corresponding to a,. ...

The primary rainbow corresponds to, rays that have, undergone vo refractions
and one internal reflection as shown in Figure 3-5, We now show that the angle (I)

44.
(the angle between the emergent ray, and the incident 'ray) has a stationary value cp,

and eitpress in'terms of the relative index

from the figure, we have:

FIGURE 3-5

(7) 2
= 213 - a .

ciEEquating to zero We obtainda

(8) 24-12 =. 1da
'
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rfl't
.

e
tin addition, by differentiating the law of'refraction = since, we havee

µcosh da = cos u ,

5
so that (8) and (9) yie) ltIr,,

r
(10) . 1.1 cos fi = 2eos a .

Thus from, (10).:and (5), we obtain
. '

(11) 3 cost as 4= - 1
i .

. iwhiphletermines the stationary value as of thoangle41 incidence ,:..,and consequently
i

\ A .

4

1.;

the corresponding values of /is and (Ps. In particular',

(12) sin

Fpr yellow light, 11(0 4
, and consequently (p. 42° ; for the colors red through

3
(21.. 1 1-4=2:Ii
2 74: 3

Pt

blue, the corresponding values of GPs decrease through 42° . .
9

This result for a cylinder also bolds for a sphere, and is therefore-basic to the
rainbow formed when sunligltaiiiinates a region of air containing many water drops.
For one water sphere, if the sun is in back of you and you

Gros-
can sec the ray through P

of figure 3 -5, tike colored rays will be at about 42°'with respeeeto the direction of1'.
crdence (in the plane of the sun, the drop, and your head). If-the sunlight illuminates

a large.number Of drops over a very large volume of space, tl.en you will see the
familiar r ainbow arc.

For the secondary rainbow, corresponding to two internal reflections, we deal,
with the geometry of Figure We now have

(13)

P c

_ co = 3/3
2 2

FIGURE 3-6
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iH

Differentiating (13), and using (9) and (5), we obtain

8 cos2. = - 1 ,
- .

c

4"1

and consequently

(15) sin
. ,

4For p = --, we (p. ge. 51°. More'gelieially,,,for n internal reflections, we.lave
, .

3

p4 + 18p2 - 27
2 8;13,

S

(16) cost
cis n(ii4 2)

Using the fact that p(w) increases as the colors go from red to blue, one can describ

the appearance of the primary and secondary arcs in space and account for the differ-

ent orders of the colors in the two cases.

Stratified
.

Stratified Medium: we apply the law of refraction to a ray ttaveling throtigh a set

of parallel slabs as in Figure 3-7, such that each slab has a different index of refrac-

tion, we obtain

(17) Po sin Op = pi sin Oi = µ2 sin 02 = = constant = c .

110 2

ey,

:
FIGURE 3-7

I

A

Similarly for the limiting case of a continuum whose index of refraction is solely a
,

function of x, we have
+

(18) . p(0) sin 0(0) = p(x) sin0(x) = c

4

,, ...........

. 6571
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1

USing = tan° =
1
sin°

6
, we obtain

dv--
dX s in 2

(19)

/- )

. ,
from which

(20)

r.

dX%

1

Integrating (20)-begyeen 0 and x , we- obtain

(21y ) , Y Yo

0

Vik\2
of

Thus in terms of p(x) we have derived an equation to specify the set o
ate 0 , yo and arrive at x, y.
.

As an illuStration, we assume

(22)
ti

C.

ys that

where b is a,n assigned parameter. To evaluate the integral (21) in terms of (22), we
change the variable to (p , such that

(23)

and rewrite (21) as

(24)

c(1 +b) =, sing) ,

1 rein-1 i
sin

(:1+ bx)

y° T3C J-i%e

Thus on integration, we obtain

(25) .

r
1}C lz, + [Y +

1
12

-JbJ o cb Tgr
.

_i.e., the equation of a circle .of radius 1 whose center is-located'at ,e
91 c2 -

"-Y° cb

Rotating the coordinate frame of Figure 3-7 (for convenience in thefollowing
application to rays in the atmosphere), we show ray paths in Figure 3 -8 for (25) with
b < 0 and.w..6 b 5 0. -4;

6.6 -17
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b <0
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FIGURE 3-8

b> 0

_
The ave results 'serve to account for mirages. Normally the densityof the

atm&pilere decreases gradually with increasing altitude; the index tt , which depends

primarily on the density, also decreases.gradually. However, over a cold extended
surface the density and tt may decrease rapidly with height. An object on the surface
mp.y then be,seen at large,distances by nieans of down-curving rays as in Figure 3-9

P

.

.1:1
\

o-

FIGURE 3-9

4,4 ,

-,40*_,

(in which the curvature is greatly exaggerated). The eye. fights along the angle of le. .

- , ...1-

ray's arrival, and one imagines that the ship lies along, the
-4 line-Of-sight. On a much

/
, larger. scale and with normal decreage of, li.with altitude, Figure 3-9 accounts for

our seeing the sun by-refraction after'146,v'assed below the' orizon.
r ....4%.-

A more common mirage occurs over a hot extended surface when the density and

I.A first increase and theidecrease with increasing height: For such cases-lithe eye

.may, see the object by an upourving ray as well as*by a straight ray as in Figure 3-10
*

. -
-.- ""

.

'

. -



FIGURE 3-10

(in which the curvature is again greatly exaggeratedl. In this situation the eye sees
mirror images; since this is reminiscent of reflection on water, one also imagines
that a water surface is present.
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4. Kepler-Lambert Principle.

In Section 2, we assumed Hero'S-,,principle [In that the ray path -be stationary,
and used the calculus to reveal some of the impicit physics. Except for the discus-
sj.on,of shadows, we did not associate a magnitude with the rays. We now do se, and,

then supplement [H'] with an energy principle or flux principle. We introduce a fluX

density F = 1 Fl as a measure of the energy flow per -second through unit rea nor-
.

mal to a ray; indicating the direction of a ray by a unit vector R , we callR the flux
vector.

Kepler in 1604 (by a mixture of mysticism, insight, and soihe observations of
light sources) proposed the inverse square law for the flux density associated with a
source of light. He argued essentially as follows: If a steady source (one not varying

with time) is emitting rays uniformly in all directions, then the total associated flux
(total energy per second) passing through any spherical surface centered on the source

. *

(as in Figare 41) is a constant, then, since the surface of a 'sphere increases as ,the

s = 47712

FIGURE 4-1

1
square of its radius R , the flux density F must be proportional to ,iii . '(Visualize.. .

the source as sometia.ing like a steady 'omnidirectional water faucet.) Equivalently,

since

(1)

it follows that

(2) .

fF(R)dS = F(R)fdS = F47R2 C,. a constant ,

F(R) .
4vR2

Lambert ^(1760) generalized (1) by taking the component of the flux vector

normal to a surface gs the measure of the energy flow. Thus if S is any surface en-
.

closing any steady source, and if 11 is the outward unit normal on S, then few:II-the

work of Kepler and Lambert it follows that:
r

-is FR 1,,,,,fIdS fs F cos O'dS = constant = C , .
where 0 is the angle, between the ray. direction 11 and the surface nornial i4 as in

Figure 4-2.

2'
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FIGURE 4-2

06,

Equation (1) is the special case of [KU corresponding to a uniform point
1111.

at the center of a sphere; for this case- F depends only on R , and R is parallel to A .

If we take the constant in (1) to equal unity, then the correspOnding4form of (2) is the
flux density for a unit point source:

(3) 1
7: F 434.4 47rR2

Equation (3) corresponds to uniform radiation in three-dimensions.
...:________.

We may also apply [KU to determine tit flux density foda unit source radiating
uniforml3p4n o two dimensions, i.e., to obtain F(R) for a unit line source. Thus we

.

'''SV, consid an e nded source along the z-axis emitting rays uniformly in perpendicular
-.4i'' ; Pxy-pla es as i Figure 4-3. We apply [KM for C.,--- 1, and S equal to a coaxial

'''4,

FIGUAR.4-3-

right circula,r cylinder having unit lengt#,,,al z- and radius R as in Figure 4-4.

7,0 rjI 0
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Z

N =-z

FIGURE 4.-4

The [KL] integral vanishes over the flat caps of the cylinders at z = 11/2: fv,these
pieces, we see that,ii is perpendicular to = i^ (\owe a" is the unit vector 4.), and

.1t,

-consequently R N = ±R z = 0 . We are thus left with the integraripver the circu-
lar wall (of height unity and radius R), for which > g A --- r

ts

(4) 'F-(R) fdS = F, 1 .27rR

where weo itookC = 1 to corrpspondIo a unit source. Thus from (4),
-

.c (5) t F(R) =
27rR

is t14g flux density for unit length of unit link OUrCe.

imilarly a plana. r source is defined as an infinite,plane (say zy) emitting
rays.perpendicularly along A = fx = fX .9For this case we take S as d right cylinder
as in .Figure 4-5, with faces of unit area parallel to the sour-de (and "enclosing" it).

Since it 14 vanishes except,v0r these unit fades, lc La for C = 1 gives

(6)*040Ar

and consequently
,

(7)

FfdS = F 2 = 1 ,

0

F = 1

..

is the flux deisity for Unit area of source.

It should bekept in minbithat all the above equations are very special cases of

[KL] . In general FR is a function of all coordinates, and [Kt] applies for any
cfosed surface 'enclosing any number of steady source's.
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--FIGURE 4 -5'/

.- .

From1K-Li it also followslhatthe integral over a surface So that does not
,

eficlOse any sources must vanish: , -,
. r

(8) ',Is. FR lqd§ = 0 , , **

he :; tlie constant in [KLJ is zero for a source -free region. (The source is outside the
closed surface, so that, whatever flows in through part of So flows out through another

' part.) We use .this to define a pencil of rays (a narrow cone of rays) analyticallY.

Consider the capped tubular surface So of Figure 4-6 which encloses aset of
-.

.. .

,

\.

Nc

N

FIGURE 4-6 -- 1
"

y1'%_%, .'-- ." ig,
4) 7

f

74.
.

, ..

..
'''' "C..)..o 47..,rays. The ,curved surface Se is generated by the rays passing through the boundary ,:..., c::-.--

curve of S1, and the entrance and exit faces Si and S2 are taken perpendicuiar;;to Ihe.',.,

e
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t
rays, i.e., the faces are piepes of the, eikonal surfaces discussed in Section 2. Thus

if Re, RI, and N2 are the normals to S., S1, and S2, respectively, then ft -Re= 0,
R Ni = -17, and R N2 = 1. Applying (8) to S. = S. + Si + S2 , we see that the

integral over S. vanishes and we are left with

(9) fs, FdS = fs2 FdS ,

where the integrals are over the entrance and exit faces Of the tube. In general F

varies from point to point on each face. However, except for special situations, we
can take the fates small enough so that the variation of F over each is,negligible,

and approximate (9) by 44,

(10) F151 = F252 .

The set of rays for which (10) holds is defined as a pencil of rays; the setjs pnclosed

by a tithe whose faces are portions of eikonals. In 'deriving (10), the "speOal" Situa-
.

tions which we excluded are those where a face coincides with a focu*or caustic. As
discussed in Sectipn 2, a focus corresponds to the intersection of many rays, so that
a closely fitting,tube enclosing such a set would narrow down to S2 = 0; for such cases
(10) is not a valid relation for F. However, such cases are still covered by (8) pror
vided S. does not intersect the caustic.

Let us apply (10) to the essentially two-dimensional problems of reflection from a
.cylinder with generator along z discussed previously in Section 2. Dropping the un-
essential z-coordinate (i.e., taking'all pencils as having tvik height arong z ), we treat

S of (10) as a small arc length equal to the local radius of curvature (p) times the
small angle 0) subtended by S at the center of curvature (tfie origi'n of p),

(11) S = pzi) .

Since the two faces in (10) are chosen as portions Of eikonals (surfaces normal to the
rayS) and the centers of curvature are the limiting intersection of the common nor

trials to fices, we see that SI and S2 have the same center of curvature, Thus
4

S14.1 = s2/P2 = it) , and from (10) we obtain

S2

Pi
='-

Pi
(12) F2 =r1r

; P2

specifies the variation of the flux density With distance along' ays.
." 1:

We now consider the perfect (complete) reflection Of a parallel penCil of rays of

width` S0 and flux density Fo from aszTivex curvilineal-pottion C1 of a'reflector as

in Figure 4-7. The. length of the eikonal of the corresponding reflected pencil is Si at-

CI , and S2 at a distance'R from Petrfeel,reflectien Means that 'nq rIsys penetrate_

the reflector, i.e., the'taal incided flux is 6 nseihredli Y tEe'prdbess -argpaspe,5.
through theqerminal cap S2 . . Thus (1,15) holdS: Fo So Si-. -Approximat-4;',

.4 the cuiyes by their tangent lines, we have S = S0 (an h 'equals CI' coq a ,

- 4
t

4 -
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FIGURE 4-7

I-
4

where a is the angle of ..the rays with the normal at C1); consequently Fi = Fo .. Since
Ci is convex, Si> Si and it follows that F2 < F1 = F0. To express F2 explicitly in
terms of Fo , we now use (12); we write the radii of curvature of the eikonals as pi = p
and p2 =_p + R, and obtain

(13)
I For)

F2 = Fi [72 = p+R

where R is the distance along the reflecte,d pencil, and p + R is the total distance
from the caustic (the locus of origins of the p's). Thus as discussed in Section 2, the'
rays-that pass through S2 appear to originate at their virtual intersection point (On the

4

caustic) narde the reflecto

For the semicircular mirror of radius a e.(see Figure 2 -13), we:found previously
that p = cos a , where a is the angle of incidence with the surface normal; this
also holds for reflection fromiva convex portion of a more general surface in terms of
the radius of curvature a 'at the point of incidence.. Thus for a convex point (i.e., a

point on a'convex portion of the, nirror), the reflected flux density equals

(14)

a 14cos a
F -5%
. coS a R

Fo ,

, ,,,A., 7..

where we dropped the sub,script 2.We may als ewritethe above as F 1-LQ--
1

. e ' (1 + RQ).
where Q = - is the curvature,Of.thef6 e reflection point: r

P
',- i .. ;'"; , ,

,. ' .. i

On the other hand, for reflection from a cone ve point; the ,Cdti,pc is ffial,,ana ,
_ .. PR and p are on the same side of the refleptoirrae..i Figure 4.- ' For thiseease-we

. ).-"i ". " i...--71..,replace p by -p in (13) and (14), anti obtain' , e,. - .,.,
.

7;4 8 0
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FIGURE 4-8

cos a
(15) F I

p - RI
Z,F

° a-f cos (V1
,F0 R i p = a cos a

where the absolute value is used be-cause-vs-defined F as a positive quantity,. Equa-

tion (15) specifies F except on the caustic R = p , the special situation (, = 0) excluded
tfrom the start when we introduced (10).

Equations (12) to (15) aMly for two-dimensional problems. The discussion of the

corresponding three-dimensional forms can also serve as a vehicle for some ad4i-

tional terminology.on properties of surfaces. If the neighborhood of a point on a sur-

face can be represented by fun- ctions all whose derivatives exist at the poilit

(regular at a point), then there are two, orthogonal directions (the pAncipal directions)

on the.gurface for which the radii of curvature have maximum and mininium values;

these are the principal radii of curvature pa and pb. In terms of pa and pb of the

eikonal at the point of reflection, the analog of (13) is

(16) F Pa Pb Fo
(R Pa) (R

so that
F o

is essentially a product of two terms of the form in (13). Equation (16)

holds if the scatterer is convex at the reflection point; the reflected tube di!ierges in

both principal planes (the planet' through the principal directions and through R). Tilt&

extension of each r4 within the reflector lies in general on two caustics; both caustics

are viittual, and r.eqiiire negative values of R for their specification, i.e., they.carre-
.
spond to the vanishing of -R + pa and of -R + pb. On the other hand, if the scatterer

4

is concave at the reflection point, then pa and pb are negative and the caustics are

:real; the reflected tube is initially convergent in both planes. If the reflecting surface
-zrett

is convex in one plane,and concavein the o#ier (i.e.,,if it has a saddle'point), then one

Caustic is real and one virtual; the reflected,tube is then divergent in one plane, and

initially convergent in the other. The first two ases (convex and concave) corre-'

spond to elliptic points of the surface, and the third to .,.hyperbolic point. Between



°

A .
! `: i 'A -. . 8

thesePtwo classes of p6ints lies the transition case ot, a parabolic point; at a parabolic A
sl,

point, one radius of curvature is infinite, and (16) reduces to (13) as obtained previ- f

ously for two dimensions.. If both pa and po of (16) (or if p of (13)) become infinite,
olez

(16)

then we obtain the result, for a plane reflector,:,F = F0 .

In addition to the above points, there are spe cial points at which the principal. , -. ''directions are indeterminate: at an umbilical point the radii of curvature of any two
normal sections (the curves cut from the surface by planes containing the normal),are
equal. In general, the umbilical points of a surface are isolated points. However, we
have already implicitly considered one surface all of whose points are umbilics, i.e.,
the pland scatterer for which F = F. The only other surface having this property is
that of the sphere.

We can discuss,feflection of parallti rays from a sphere of radius a by exploiting
our analogous results for the circular cylinder. One caustic for the sphere is gener-
ated by rotating that for the circle around the axis of symmetry, i.e., R = - cogz.

,

aIn addition, thert is a line caustic R
2 cos awhich arises from the rotational

symmetry of the sphere: all rays.incidtnt on the sphere at an angle a (the rays iry a
' circular tube) give rise.to reflected rays 'Whose extensions intersect the axis of sym-

metry at the same poiiit (after grazing the epicyalbid) as in Figure 4-9. For2 cos a

FIGURE -9

the circle in two dimensions we had only two such rays; for the sphere, we have a full
rhig. 'Thus in (16 the radii of 6t1rvatute pa and po of the eikonal at the reflection

apoint' equal
2 cos or and a2 cos a ' and we obtain

(17)

1
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?lux and Path Length. A remarkable property of F as in (14) (remarkable only at the

present stage of our development of a mathematical model for scattering) is that it

can be rewritten in the form

(18)
Fo a2 cost a

F RL"
6 9

C

where L'A is the second derivative with respect toga of the geyeral path length

4 + R(e) = L introduced in Equation (2.:3)`, and where the subscript Hindicates that we

use the condition L' = 0, or 0 =,2a, as follows from Hero's principle. (We can re-
...

place L'iyar by the second derivative of L with respect to arc length along the reflec-

torj We may assure ourselves that (18) holds by retracing our derivation of the caustic

in Section 2.3. Our equation g(a) = 0 for a reflected ray corresponds to L' = 0, and

our equation g' (a) = 0 for the caustic of the reflected rays corresponds to LH = 0.

We mention this 'km to make more explicit that, F becomes singular on. the

caustic =LH " g'(a) = 0 , which indicates a limitation of our present esentially geo-

metricalmetrical model for the propagation of light, and as,a preview of a deeper relation

between flux and path length that must hold for a more conaple model.

Partially transparent surface: We can extend the esent flux consideratiOns for the

case of a perfect reflector to the case of partialyly transparent media considered in -44

,Section 3, and obtain the corresponding reflected and transmitted fluxes when a pencil

of rays is incident on the curved interface of two different optical media,. At the pres-

ent priinitive stage of our model, we simply introduqe a reflection factor 0 .< PtO 1
..

as a multiplier for the values of the reflected flux (e.g as in (14)) for the correspond-

ing perfe:cfly,reflecting surface. Applying (8) to a pencil of rays incident on a plane,

interface (withSo "enclosing" the interface as in Figure.4-5), we then find that for

the incident flux to equal the sum of that reflected and that transmitted we require
that the geometrically transrnitted flux be multiplied by the transmissian'faCtor

1 P(a). 11 1 I

iS ttering Applications. In4the above we applied [KL] to obtain t e flux density f r
--- ,

elenierttary sources (in (mei, two-, and t4ee-diMensioni , arid to determine the
'

change e of flux density along' a ray in a pencil of varying cross section We now extend1
......04- four considerations of the elementary sources to the analogous scattering problems.. ., .

. We define)he corresponding "elementary scatterers" by the previous stipulation that
- &

the total.radtated flux equal unity.and that it be distributed uniformly over the available

`directions; then we indiCate generaliiation6. We do not solve any scattering problems.-

explicitly, but exploit the
. ',4
preViotts devdloprnent to introduce terms and general foinis

, .,., ,,,I.
.....- .

._ , &for subisequent use. , , . v-
.

Thus if we have a set of paiallel rays normally incident on

plant& scatterer at x = 0, as in Figuie 4 ,20', then from Sctidn

. .

-

ti

77, 6
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FIGURE 4-10
.
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rays gives rise to -a. reflected set of rays and to a shadow forming set of rays. We
may say that The incideferays have "excited" the plane and converted it to a source
of radiation; we call the incident set the primary radiation and theThInft ered set (re-
flected plus shadow forming) the secondary .radiation, and say that the plane has

.become a secondary source. We define an elementary planar scatterer as a secon-
dary sburce fully analogous to the simple intinar source considered in Figure 4-5 and
Equations (6) and (7). (In a later section we consider analytiCaily the specific problem
that this corresponds to,) The essential featu of (7) is that the flat does not depend,
on distance. Similarly for a more gerferal planar scatterer we write the scattered
flux corresponding to the direction of incidence >I as

(19) F = , R =fx,
where the direction of,sca ttering ft corresponds either to geometrical reflection,-0,; .
ft =' -x^, or to forward scattering R = is. (For parallel Lys incident on a perfect
reflector, it turns out that M is the absolute square oi E discussed in SectiOn 2.4; if
the incident flux density is unity, then M = 1.)

....., . .
i° ° : .

imilarly if we visualize rays incident perpendicularly on a fine cylinder as in
I

. .. .
e '4-11., and apply [11) essentialry as for the discussion of edge diffracted rays

.
3

CC7
0

4.

X

FIGURE 4-11.
ti

0

, ,.
S-in Section 2, we See that. he scattered set of rays travel radially outward from the.

. -
catierer. We dine an elementary line scatterer as a secondary source fully

:

k ( I k, , ( . . .., -- , °

I

O

'

o
0



analogous to the line source of Figifres 4-3 and 4-4 and Equations (4) and(5), i.e., the
total outgoing flux per unit length of scatterer is unity, mid the scattered flux density
per unit length ip given by (5). Similarly for a more general line-like or cylindrical
obstruction, F is inversely proportional to Ili:but the flux density is no longer the
-same in all directions:

(20) - "' 21)R

where" the direction of obseiliation ft may range over allyalues in the xy-plane.
. a

Finally in three dimensions, we visualize a point scatterer excited by rays, and
define a secondary point source analogous to that of Figure 4-2 and Equations (1) to

(3). More generally; for an arbitrary scatterer in three dimensions, the analog of
(20) fs

(21) .

fir'
where again M depends only on directions and not on distance. The three functions

M depend on various parameters, and their determination requires a more complete
mathematical model than the present one. However, the forms (1911,(20)', and (21)

give the appropriate..dependence of on R.

We are now in a positis to furt disc ssion of the relative magnitudes of

the different rays of Section 2. Thus parallel rays incident on a broad finite strip
`excite essentially two kind& of secondary sources: the, body of the strip becomes a
secondary planar source with reflected flux density equal to that incident, and thT.....A.,....
edges become secondary line sources withflux density specified in general by (20).

M
'

X)F
112

t,

O The flux density of the rays geometrically reflected from a plane are iddependent of
distance but the flux density of the rays diffracted from theedges decreases in general

J. i i)( as Tt th ncreasing R (The form' (20) does not, hold on or near a caustic, of edge
I I .

rays; N e requiNa morelcomplete sc ttiiing niodcl in order td discuss magnitudes
near caustics, not only of diffracted rays but of reflected and transmitted rays as
well,)

/79 90 )-



5. Huygens' Principle.

In preceding sections we considered the reflection and refraction of,a parallel set
of rays. We started with ElclidiS restrictive laws [EJ of propagation arid reflection,
and then replaced [E] by the more, general principle [HI of Hero that the ray path (L)
be stationary; using [H'] and the calculus we determined the caustics and foci of, the

rays reflected froin'tV'Ved surfaces. Siniilarly, to consider the set of rays trans-
mitted ough an interface Of two transparent media (medirspecified by different
in ices of refraction te) we started with the restrictive ,Snell's law (SI of refraction;
and then replaced [ S] (and [H']) by Fermat's more genera\14))rnciple [F'] that the it

lave' time or optical path (JAL) be stationary. Thus all "our results on ray paths and
their envelopes (caustics)' are cdVered by the one principle [F' ].

In the discussion of systems,of rays in Section 2, we alsb introduced a system of
eikonal curves (eikonal surfaces in three dimensions) that were perpendicular to the
rays; in Figure 2-16, we sketched come of the eikonals for reflection of a set of par-

<

allel,rays from-a convex cylinder. From the remarks at the end of Section 2.4, we

see that we can constructs eikonal curve of Figure 2-16 geometrically as the, curve
traced by the end of a taut String (taut against the epicycloid caustic curve of Fig--;
ure' 2-.12),shose oth& end is fastened at the cusp. Thus if we measure length 'along ,

'the string, then each point Of an eikonal is at the same distjance from the cusp of the
caustic. c

In addition to [F'] , we also used the Kepler-Lambert-flux principle [KL],to
> ,

associate a magnitude With the rays (the energy per second crossing unit area normal
to .a ray). We used.[KL] td determine the flux for unit symnletrical sources (three-,
two-, and one-dimensianal,), and to derive the change- in flux (ft itylor a pencil of

-ti.' ,., f ,
ray's reflected front a curved surface. , .

i . TlIisall our preceding discussion is overec45/1the two laws of nature [FJ
,

!and [KM plus some of the implicit physi s relevaq teometrical optics pheno en?...

Th basic physics was contained in the, o laws, the rest was mathema ical m ipu-s
lation based on a geometry of rays and some procedu es of thescalcul s. As a re-
iiminary to the introduotion of additional structure in o our mathematical model for

> .
the propagation of light, we now supplement our previous geometrical construction of,
the eikoials by an alternative construction call Huygens' principle. This principlecall
by itself does not give us any pew results but and This is often much more significant)
it gives us a new why of thinking about the. results we have already obtained.

In*Sectio mentioned the two familiar forms in which 'energy prop ates:
packagednro d particles, or associated with waves. At the present stage f the

' . .

V,
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'development -the flux involved in. (ILL) is in some sense guided along the geometrical

rays. It is easy to visualize the rays as guide lines for very fine/particles (a view

held by the ancients, and refined biNewtorit- 1705), but we may also regard the rays

as the normals of a system of wave surfaces (theeikonals).

Many individuals (Hooke, Eule, Mid others) regard light ns a wale motion inla

special medium, but it was Huygens (190) who introduced the subject as an analytical

one. His intuition was based on the analogous two'-dimensional problem of how dis-

turbances travel on the surface of water. (Drops of water dripping off your fingers
.above the surface of st' 1 water create disturbances at their Point of impact that then

'travel outward in circu les along the water surface.)

.Huygens used the fact th ,t light has a finite velocity of propagation v (as estab-
lished experimentally by Timer,. 1670 .for the development of a wave, theory of light

Heca.ssumed that .in a given medium, light starting from an elementary Source at time

to would Spiead as a spherical,surface whose radius r(t) increased in time as v(t to.
N i

If we start a light source at time to and leave it turned on, the corresponding
Huygens' wave surface is an outgoing spherical front a,discontinuous disturbance

4 , :

whose one-dimensional analog,is shown in Figure 5-1. In this figure we plot a magni-

tude associated with the disturbance (say the flux density F introduced in Section 4,

or a related function) as a function of time; at ti e\tli > to , the wave front has moved

distance v(ti - to) , and it keeps advancing wi increasing t . (The discontinuous

A'unction drawn in FiguA 5-2 is called aleaviside pulse) 1
.,

0
t at

'F F

4

:FIGURE 5-1

Starting with an advancing wave front (here

d'itnensions, Huygens regarded each point bn the

an elernaigasplierical wave (call it a wavelet

time Proportionally to v . Thusilf the or nal w

0
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ave surface W as a neW source of
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) whose radius also increased in

ve surface W is a sphere of radius,
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.
r(ti) , the wavelet surface__w_ spreads as a sphere of radius R(t) =, v(t ti); the two -
dimension is shown in Figure 5-2. To obtain the wave surface of the source's
advancing wave froht4TAygens prescribed

[Hu]: to construct the wave surface W(t2) at time-t2 > ttl , regard
the wave surface W(ti) at time ti; as the lobus of the centers
of wavelets w of identieal radius R = v(i.2 - t1) , _and talr2
W(t2) as the outer envelope of the set of wis.

Figure 5-3; based on Figure 5-2, illustrates [Hu] . The essential notion is that if 1we assign an appropriate magnitude function to a wavelet, then only on the outward, en=
velope, of the set of Vs only on W(t2)) do the thagnitudes of the W's add up9
(reinforce))to give a significant overall effect.

, FIGURE 5-2
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If a plarnr portion of a wave surface is incident on a reflectingsurface, we can '

construct the reflected wave frorit by means of [flu ] as inccated in Figure 5 -4. The

FIGURE 5 -4,

4

figu,re shows the inbident wave front at t1 (plus the two rays or normals that bound it),
.and a dashed front at [t2] to indicate where the front would have reached time 4

t2 > t1 in the absence of the reflector. The actual reflected front at time t (the image,
shown unbroken) of the dashed front at [,t;] is the envelope of the wavelets generated

by the incident front as it encountered the reflecting surface. The dashed front is also
the wave front ofthe Shadow fopning rays discussed in Section 2. Figure 5-5 shows .°

Ar °)

7 0

1 PO i"

.. FIGURE 5-5
. ,

.,.
.. . ..:. ..

low liuyienst constructiektor scattering by a strip yields the closed sea fed wave ,
.i

su'rfaq9. correspondini.fo the reflcted' sus shadow-forming plus diffracted
1 . . . rays.of 4.; .-,-;,4:,

ty T
Figurel2-17(dj; the result ii of,courie>simply the closed elkonarof Figure 2-47(e).

. -4 ., 1 ' -''' ',-4 .: . . ...'
.

. .-.
Similar if thi scattering iouyfac is the terfac'e betWeph two differentoptieal , .g! .,,.. ,.. . T: ti 1

'media p.pec led by velocities v.! d'' we c sti-uct e transmitted po onS 6f the ... i

A

A

s

f



she into account that these Portions are traveling at velocity vi instead
construct their-errv. elope to obtain the refracted wave front as in

w'avelets to t
of v., and then

A

,FIGURE 5-6
.;

We have indicated that the Huygens' wave surfaces arOsimply the eikonal sue-
faces discussed in Section 2. We now apply [Huj to reflection of a plane wave front

k(parallel ray system) by a perfectly reflecting convex semicircle and makers
k identification explicit. Since all waves in this problem move with tte same velocity,

all distances (L) traveled are proportionarto time (t)., so that we may work with
either L or t ; in order to exploit our previous figures and. results, we work with
distance L. The center of the circular scatterer in Figure 5-7 is at x 0, y = 0.
The _corresponding incident wave is a plane wave front \ribose position at any time

rI

r

x = -a cos a X = X .o

ICTRE 5-7



t = to may be indicated x ; our reference time is t = 0 , and our reference
position is x = 0 .

We treat the, Huygens' construction for Figure 5-7 essentially as we did that of
Figure 5-4. We construct wavelets of different radii at different points:on the circu-
lar scatterer, the radius at a point being proportional to the time it would taken

the incident wave front to tr- aye/ from that point to th6 plane x = xo. Using Huy ns'
prinCiple in this manner we may sakthat a point n) = a(a) of the scatterer, were

= -a cos a < xo , under excitation by the wave front x =, -a cos a (se.Figurc

radiates a circular wavelet Of radius I xo I =-1 I a cosy + x01; here x = xo is the

present positioriathe incident wave front. The resultant waye front is the envelope
of all such elementary wavelets. To construct a wave front geometrically, on draw s

4
enough such wavelets to enable their envelope to be sketched. Figure45-8 shows the
case xo = 0 (i.e., for the time when the incident.front is at the origin) a,nd Figure 2-16

aof Section 2 shows .additional curves fortdifprent values 4 > in each case, the
2

gtraight portion of the curve corresponding to the shadow wave front is also,the posi-
tion that would have been reached by the incident front in the absence of the scatterfr.
The curves of Figure 2-16 can be constructedteither by using the,present procedure
(circles center ed on the scatterer) for different constants xo, or byusing the wave
surface of Figure 5-8 as the,locus of circles of identical radii and then drawing their
outward envelope. 0

-4 ,,
'

, 891
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Analytically, we find the envelope of the famil37 of circles by the same prtocedur4
we used in Section g to obtain the nvelopesof a set of straight lines. Thus if we take
x0 = 0,, we have thee equation of, a Huygens' circlet .

(1) (x + a cos a)2, . + (y - a sin a)2 =a2 cost a .

The derivative with respect to a gives y = asin-ee - X tan a, and substituting this/
expression Mr y inte thecuation of the circle (1) gives x (1 +tanz a) +, 2a cos = 0 .
Thus either \-

(2)
3

x = -2a cos3 a
a

and y = a sin all + 2,cos24) , :5-, a

or

(3) ""r''' x = 0 and - y = a sin a ,

The pararnetric equations (2) describe the envelope
I

,(4)4

'I. , . 2 : ,so that the corresponding curve (W of Figure:5-8) is half of a two.cusped epicycloid
(twice the'size and rotated through 0 degreeS, as compared with that for:the rays
shown in Figure 2-12)$ This .portio of.the waverfront is generated by a point on a

*circle of radius -4. foiling on the circle OP radihsa, . The equations (3) specify.the 42
A

_Ws portion of the envelOpe of Figure 5 -8, which consists of a line ,segment of width 2a ,
44, ., 'normal to the direction `of incidence; this correspOnds to the shadow forming wave.. 12.

,.,_

Having one wave surfa'ce analytically as in (4) and (3), or .graphically as in Fig- 13

-ure,15-8, we can construct its normals (the rays of Section ?1), and then obtain any ..
other wave ' rorit "'laying off.. p:constant distarice a4ng thenormals and joining the

-4

i14

points. We can constru t the evolute,of the wave fronts the austic of the rays) and

2
determine that R + i distance,:-

os a is the radius of curvature, wh re R ,s dist alo i g
1

thelray from the mirro ; and, of course, we can "discover' the law of geometrical re-
flection by noting that at a given point, the reflected and cident wave normals m

i

eke

'
(x2 4: y2)

+ 22)3
e az

(a

2 *,

equal and opposite angles With the scatterer's normal:'

From a "paire"Aave view, in order to determine theiscattered wave front when
-

the-jncid'erit front is at any position xo > -a , we use the N6ve surface of (4) and (3).
derived for X0 = 0 (W = WR..4. Ws of Figure, 5-8) as Tth locus of the centers of,..
cir9les of radius 1;c01 and again determine the enyelope,meohLically or analyticlly,

r
a..i.e., we need not refer back to the surface of the scatterer. If xo > - yi we obtain the

wave'fronts sown in Figure 2-16 of Section 2.. The point. on a wave surface (corre- C.
, . .

., - 4 ,

poxidifig to thetinCident front at xo) at i distance R =, x, -:a 6 os 4 from the mirror along , z
a ray, may also be designateclly the Cylindrical coordinates r and 0, as in*Figure,5-b,

.: A : 1 j e. I . .e.
t .4.

e# i

1., A

86..)19
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fir

.y.

. . FIGURE 5-9
''' . -.

®

°

. >.

kor?-very large volues,of )4
.

, ,We see that R and. r,..
.

'' ,.
are practically parallel

; e

pd that 2a.; we have r R 7 a cos xo - 2a cos a' xo --' 2a I sin F

which corresponds to a wave from a source at .x = - 7,a- (the cusp.ofIlle viitual a
A '4o,

*caustic). 1.f we then neglect a << r, we obtain r ".x0 and theoadirOnts approach
"circles centered on the origin of the mirror.. . .

For incidence on the convex semicylinder, these wave fronti are seal in fhe-s

sense as wb spoke of real intersections foHhe rays of Section .2; for inciden on the, '

I

.,concave;semicylinder,the wa,ye fronts-of .Figure 2-16 are virtual., the vi 1.wave-
/

,.., fronts for incidence on the convex cylinder (the real one for the.'.cOncave case, are
I

obtained for xo < -a; these are the curves of Figure 5-1(b) to,'(f) plu; their images
in the Vila s ., If -a < 2C0 < as as in Figure 5-10(a), then the way slIftin a,..pari zeal _

. (the part near the axis) and part viriiial. For the sphere we,obtain.thevirtuarwave
4:fronta by rotating the curves of i '''..-5.0 around 'the x-axis. '. , ,

.4

., .

4 .,
,,,,

, ,,,, . i
In F'igure 5-10(b) to (e), the stra ght, es correspond to the'ihadow forming wave,

'er ,;,.
tt e,cury s interacted by-thereflec r sug st an edge wave, and

t
the remainingocurves

oasuggest a aye outgoing from an on 'n at x .2- (the geometric fi5bus);"the set of

pletely inside the reflector alsa d includes the axial points; *:a in
3 -.. ..1.-:,

=',.-
2 ,r.:,--

) which corresponds to xo =(--F . The most significantleanrAo

that the locus of the cusps (which correspond to strong rt)aitrat,. .,..`4

is the virtual caustic of the geometrical rays derived pievfousiy,

curve co
ure,5-10(
figures i
wavelets

tire 2-12
from -
'virtual c

ig- ...-

e iii Of
etlt of the

-.,
ig.II

. .140k-7L5 '' 1. .4The figures in reverse order, (f) to (a), illustrate that as xo in ses .

- . , 4 ".Itt,If: *

to -& the inner *cusps of the virtual wave system-trace the epibSrat3.i.dal
\G 9 ,., '/. ,' 4

ustic of the reflected ray system; he outer cusps correOpohd to tbe.tkrtual I : ;
rc (x'= -00),of the Shadow form g rays. .7% r 1:i . '

0 by. the hrocedure of Figure o47(i.e.: by..4-t,0,4_ ,, 7
on the scatterer), Olen we finil'iliait,:the",

thilrelatively of theclOi; to the edge
,

1 !
... ":,...,-. ,-.1 -p 1 , ., *,;-; ,....1

0 s, V

If we co Struct the' wades of Figure 5-

means of v7a lets of different radii cente
"edge veye" is generated by wavelets orig

6.





scatterer, and that the remdiping curve (the "crater" generated by rotating the curve
around the x-axis) is the envelope qf the'l,vavelets originating close to the axis. (All

1Naillets originating -on the arc from the edge to the point (P) on the scatfeeer cut by

the very edge wavelet contribute to,the inner part of the edge wave, and the "crater
wave" gorresponds to wavelets on the arc betVeen P and the axis.) similarly if we
construct the curves of PigurIe 5-10 by using wavelets of constanOradii centered oithe
wave front of Figure 5-8, then the edge wave arises primarily from wavelets originati,
,ing on the,curve near the edge of the scatterer. If we invernhe consauction and.
generate the real wave fronts from a virtual front (e.g., Figurey5-10(4)then the
wavelets originating inside the riitector generate all but the straight 4.1 and

"rounded corner" parts of Figure 2-16.

4

1;1

^7v.:

0

f-
4'
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6. Periodic Waves.

\\* In the preceding section we saw that THI.1) applied to a wave, front gives directly

the eikonals of ray theory. auygens i)epridsented light essentially as an irregular
sequence of isolated disturbances or pulskThe essential feature of the Mathemati-
cal escription of a wave pulse is shown ,iir Figure 6-1_Jvhich represents some

IF IP
0

e

'

t

arbitrary disturbance eropagating with velocity v along the xi-axis. The significant

FIGURE 6-1- 4,

;?
aspect of Figure 671\is that the shape of the'opfilse Oeed. not change in time.

If we specify the pulse form at t =0by y = f(x) , then since the pulse form at
y +t is obtained by the translation x to x vt , the pulse form, at time t is

4.0 . ,
ven by

Phy,

mo

ically,i we see that th
. ,

ihg along the x -axis (

bank moving in the direction -X would be r.epre
"

By itself IHu] is merely''another method ford rede iving the
geometrically.. However if we associate the idea of periodicity

y = f(x t vt) .

function f(x - vt) represent
irectiv R) with constant ve

ented

the unchanged disturbaftce I I

city v . Similarly a'disttly-
by f(x tvt) .

waves, then we will have progressed quite far towards the full m
we are developing. .

tilts we Obtained ,

litiygene' idea of I,

ematitalmoilel

.1.1

Periodicity: Newton(1642-1727), by refracting"a pencil of y Vt* light through a prism
. ,

of glass, showed at a ray of white light' co d be regarded as aide up of rays each
having a single c for (an idealization Called onochromatic 1' ht), and that the relative,
index Of refracti n µ depended on color. Weto7hed on reviously in cur did us-
Sion of the rainbow when we worked with 1..(w)., with w as "color parameter." Hisci
studies'nn the colOrs obtained by illuminating thin transparent plates, essentially

."' established. that °

90 "rjlc.
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[N] : monochromatic light is periodic with period dependent on co .

Newton' s picture of light as a stream of fine particles subfect tb periodic "fits" that
followed each other at regular intervals is not appropriate for the visible phenomena
he was familiar with, but the idea of periodicity related to color is as significant at
Hbygens' idea of waves.

Young (1801) combined Newton's idea of periodicity with Huygens' idea of waves,

and regarded monochromatic light as made up of periodic waves.

If we rewrite (1) in the form f(p) with

(2) p = V(GL' vt) , k =2k(co)

--4here k(-) (the "propagation constantndeperids on color, and where p.'is called the
phase of the wave, then Young's principle states

[Y]: monochromatie.light can be represented by a:wave that is a
errodic function of the phase p = k(x- vt) .

Analytically, we express Yj as

(3) f(p) = 1(2r + p) = f(27m + ; n = 0 , ±1 , 12 , ,

4

:. ,
, .

where the period of .f is fixed at 2r , i.e., f has the same value each time its argument /
I

...

changes by 2r , the esacceSs of p over an integral, multiple of 2r gives position within
. . i

the cycle, the ,base interval of length 2r .

If we add the constraint

(4) f(0) = A ,

where A , the amplitude,is the maximum value of
satisfying (3) and (4) is the ciroular function

O ?

I f1 , then the simplest wave-function

(5) f(p) A cos p = A1/4cos(k[x - vt] -u(x, t) .

.t
We may write

.A

2r
(6) ' ..k.= -7

where A. is the wavelength 'associated with light, of a single color. If we increase x by
AxAx , then sue increase p by ..lp =`-- 2r 7 ; each time x cbanges by thp length Xit we '

,, have Ax = 1 and ,gyp =, , so that f(p) of (5) goes through a maximum and minimum
A

.
2rxin the process. The fac,t

if ' .
. Tx = --x, is a convenient dimensionless measure of dis-

tance for a cnonochromaticWave; it gives directly the phase change in units of 2r;
tcorresponding to traversing a distance x . Similarly, we may write kvt = 2r T with

., , 1 r .4 44 i 1
4

,

(7) kv = 2r

91
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[N] : monochromatic light is periodic with period dependent on co .

Newton' s picture of light as a stream of fine particles subfect tb periodic "fits" that
followed each other at regular intervals is not appropriate for the visible phenomena

he was familiar with, but the idea of periodicity related to color is as significant at
Hqygens' idea of waves.

Young (1801) combined Newton's idea of periodicity with Huygens' idea of waves,

and regarded monochromatic light as made up of periodic waves.

If we rewrite (1) in the form f(p) with

(2') p = vt) , k =.'k(e.7)

--where k(-) (the "propagation constantr) depends on color, and where p.'is called the
phase of the wave, then Young's piinciple states

[Y] monochromatic. light can be represented by a wave that is a

\-------\`,--r\-11Ierrodic function of the phase p = k(x - vt).

Analytically, we express [Yl as

(3) f(p) = f(27r + p) = f(27rn + p) ; n = 0 , ±1 , ,

where the petiod of f is fixed at 2r , i.e., f has the same value each time its argument

changes ex p
I

..

an
I

es by 2r , the excess of over integral, multiple of 2r "igives position within
;

. . . .._ ;

the cycle, ihe,base interval of length 27r. , '
..,

If we add the constraint...

(4) f(0) = A ,

where A , the amplitude,is the maximum value of then thd simplest wave-function

satisfying (3) and (4) is the circular function

(5)

We may write

27r',k.= _7

f(p) = .4k cos p = A,cos(k[ vt)) .u(x, t) .

0

(6)

. , t . .
. .

where A is the wavelenkth associated with light.of a single color. if we increase x by
/ . AxLlx , then w increase p by An 1- 2r 7 ; each time x changes by thg length a * we '

Ax---,. have N- = 1 and ..\p -, 2r , so that f(p) of (5) goes through a maximum and minithu.i
it,,.t .2rxin the proc'ess. The fac,tp. IFc = 27.- is a convenient dimensionless measure of dis-

tance for a monochromatic wave; it gives directly the phase change in units of 27r,'
t

T.,corresponding to traversing a distance x. Similarly, we may,write kvt = 27r with
.. i

(7) kv = 2r
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.

as a dimensionless measure of time c rresponding to the phase change in units of 2r
l

for a time interval, t . From (6) and ¶) we write v, e phase velocity, as
.

(8) v= T
-

.

We are now in a position to interpret he paransieters X and T = A/v introduced in the
1above as well as the " olor parameter" we have mentioned previously.

In Figure 6-1, plot u of (5) v sus x for fixed t = to-, *and in Figure 6-3, we

u(x , to )

X

I

4.

FIGURE 6-2

4

FIGURE 6 -3 .

.

plot u of (5) versus t for fixed x = xo . We see that at a fixed point time, U is
periodic in x; the wave form, is repeated at intervals of length, X, wh ch is why X is
called the Wavelength or the space period. -Siinilarly, at a fixed posit on on the

we observe that.0 is periodic in t: the waveform is repeated at t e intervals T
called the time period or simply the period.

.
At a given time to,we obtain the wave form of Fi e 0-2. A instant later,

t

to + , we Qibtain the same system of crests and valleys ),,ith ea h point of the wave

4

z

O



shifted.to x t A x,
.

such that
4. pcx

-
to + A t) x to

Thus we may visualize
.....

X T X T
L 'the wave as traveling in,the direction X = x .

The reciprocal of T is called the frequency (v) of the source producing-the wave
2irand it is convenient to measure this frequency in units of 27r, i.e., to Use w = tr-.-'- where w is called the angular frequency,. Thus wb rewrite (5) as

(9) . .
u A dos(kx - wt) , .

.., .
-A, and we identif3, the color parameter - as the angular frequency of the wave associated, ,

with light of a single color. -.

The angular frequency w is a fixed characteristic of the source o f the waves, and

does not depend on the optical properties of the'different media (characterized by dif-
ferent v) through which a wave passes however, the wavelength 1. = 21-v/. dots
depend on the medium. In general the phase velocity v is a function of -I, so that
waves of different frequencies travel with different velocities v(.,) in the same mate-.
rial. Equivalently, since the indekof r.efraction is defined as.inversely.proportional
to v , we may rephrase the above in terms of p(,..) . Taking the development to equa-

tion (9) as applying to a medium with inclp3c ofyrefraction 1.4 = 1 (free spane or
Vacuurre),we replace , k'k-for-the more genetal case by .

.. . _

. ,(-. 27r ,:l ,,27r , ' ' :...'N., Tr"'.......,.........-...ev'', N',4,,,,t,-..:e ''''t
(10) 0144X X = x--- , Xi = X ,Ix Xlint .

.

..
Y ' 4 . -4 "-''' , , , . ,,44 t:

.

c

' where- Xp to function of w and the material) is.the wavelength in the optical medium
. . , .

'defined by p(w) . -
. .

The wavelength X is the scale factor we anticipated when we soug ht o distin-
guish between geometrical reflectionand edge diffraction at the.end of Sec 'On 2. .We

'0 could have introduced much
4
of the above stiuctiire into the ray picture by associating

.
the idea of phase (periodicity) with a ray. However, the wave picture is in general
more fruitful foritheusual,visible phenomena. For convenience in the following, we
may nse a mixed terminology: with the rays,,understood as the corresponding wave

. .
t normals.

Thus we say that if light of a single color travels a distance L in free space', its
phase has changed Cprresponding to the unit so rtes of Section 4, the phase .

at a distance R along a ray frnrii the source differs from the hase at the source by
kR Similarly for thel-ehe,ction problems of Section 2, the phase of fhe reflected ray

.
at P. in Figure 2-:4a differs by k(L1 '4-11) from the phase at S , and the phase of the
ray at P in Figure 2-7 relative to its phase'at x = 9.45 givexiby

Z .

h) = k6, .+ N/It + (71 3r)2) .

From the zeometrical methods of constructing an eiliClnal (wave surface), we, see that

it is' a curve (or surfape) of Constant phase (i.e., there is no phase difference between

(. 9 3
vi:
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any two points on an eikonal), and w6 may label a Particular eikonal by a particular
value of p. Similarly for the elementary sources of Section 4, e.g., we may su
the point source of Figure 4-1 with a set of spherical surfaces of particular
corresponding to the particular phase differences kiln.

4
Instead of working direstly with cos p it is more convenient to carry out manip-

-:

dii R

'ulations with

(1.1) e ip = cos p + i sin p , c .
. , .

and take the real part Re(eiP) = cos p when we want to exhibit the periodic behavior
explicitly. If we represent ,la) in the complex plane we obtain the vector diagram
(Arg'and diagram) of Figure 6 -4. As we progress along a ray (increase L , p

. `

)

. increases and the tip of the vector of unit length describes a Circle of unit radius.
The projection of the tip. on the x-axis (the real axis) is the oscillatory function

.1
11.' cos P ; each time p increases'by 27r (each time the tip describes a full circle), the

x-projection goes through its maximum (+1) and minimum (-1)%values. (The function,
el', is often called a phasor.) More generally, we work with

e 1

(12) ,

where the amplitude/ A is positive. '

In subsequent applicationg we use the exponential form

,

(13) U = Aei(kx-wt);

such that u of (9) corresponds to Re U. Wes,Realofja.3as,a plane Nvsave
. ,

in the )1 'direction.

Tp tie in the present discussion with energy flux consideration
.4-tote that (in general)' 'at distances from the source large compar

may approximate A by a constant times fi , where F is the
for the Kepler-Lambert principle. We write

94'

tiX7

traveling

Section 4, we

avelength we - ,

ensity introduced'

0



(14) U C

where L equals x or r , and where F in general depends on,diStance.
, .

. For the point source (or point scatterer) at the origin in three dimensions, we
showed in Section 4 ilat F We therefore write the corresponding wave as

r2

(k rWt)
(15)

C3 kr '
r ,_ + y2 + z2

where we used the dim nsionless kr (instead of r) in the denominator. Similarly for a
line source (or line scatterer) along the z-axis, the wave corresponding to the flux
density F = 9-r is

ei (lc

(16)
0 .

U C2
kr

r = y2

0.?

'in the °same sense that we interpret (13) as a wave traveling along x, we speak of (15)

and (16) as waves traveling outwardly along , or as outgoing waves. For the
. planar ouXe (or planar scatterer) at x = 0 (one-dimensional case), is independent'

11.

of distance; the analog of (15) and (16) is

0.61) U = Cei(kx-wt) for x `>- 0-

. ce- (kx+wt) for x < 0 ,

- which we rewrite compactly as

ce (kix 174

° Tlie explicit dependdnce of (15) and (16) On't and t facilitates qualifying FY],

which hold's rigorously only for a plane wave, more generally, the waves are periodic
t , and only approximately periodic in r (or in p) because the denominators in (15)

and (16) are not periodic. Thus an increase in r corresponds not only to an increase
cos(kn-c4t)--.

in phase bucalso to a dea--Fe-a7se-iriffia7gT11 Vide, e; g., so that although naskr
maxima at..lual space intervals X, the magnitudes of these maxima decrease with in-s
cneasing,s, However, such magnitude effectS' for k >> 1 are insignificant for the

problems at hand.

We should esoqualify the preceding discussion of phase for the reflection problem
by explicitly restricting it to perfect reflection. If the scatterer is partially transpar-
erh; then the ra'S reflected at an angle a.with the surface- normal undergoes es in general

additional phase chabge 6(a), which we add to the. abov,e p,
0

interference: The-oncept of interference was introduced into .wave physic's by

Young..yre clisCuss interference subsequently in detail but mentitm )..t noW to Stress

s

..
, , , -,

the mdst significant filature arising from aisociatlng a wave (or more specifically a
' phase) with light. The essentials are indicated in Figure 6-5 fOr scattering of a

'-' _V
1 v et'

).',.. ,-,
,

,.,,.

,4) I 0
.
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'0;9

. FIGURE 6-5

monochromatic plane wave by a screen containing two very narrow, slits separated by
d >> X X. 'the waves (or rays with phase) 'that arrive at x,y (x >> d) from the two
slits have traveled different paths L1 and L2 , and theteRire differ in pha.S.by

I=

(19) = kdsiu6 2ri d sin0 .

Their magnitudes differ little; and.we may write the resultant wave at aE, y, in the form
r

(20), U = U1 + U2 W(1 + ,

where we have absorbed eild'i-144 and other factors into W, The corresponding energy
flux density' is prokortional to

(21), = IU12= 41211 eivi2 = 1w122(1 + cos 9)

Setting IW12 equal to unity, 'we show the essentials corresponding td
°(2) ; 1 + eigie 2(1 +cos 9) - ,

vec briallyin Figure 6 -6.r
# ...

e
e '' o
:`- .... ,

4, : 4° We see that'll (pc o' (i.e .0 0 along the x--,axis) then F ;---4. (This corresponds\" .essedtiato a caustic of edge rayi as discussed in Section 2; however, we now have4 1

mgch,raore structure for the desciiptiolrof light in theshadoW regionti As we vary y:. .
s, .;:

,..,, .-; . '

0

0

e

96' 102:.
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and the angle of observation 0 ',- x 9
the intensity F goes through a maximum valke

of 14 .when

(23)

and a minimum of zero when

(24)

= 2n7r, = 0, ±1:*2

rP = ,(2n '+ 1) 7r .

This behavior is clear from (22), and more graphically from Figure 6 - 6 : if jp = 2nr, ,
,

a
-

then. the vectors of unit lengai point in-the same clireclion along straight Ane and .
- . t

theft-. resultant is 21!, if (p .---(2n+ 1) r, theli they point in opposite directions and 4i

.!, cancel each other. The results ,f4r F %Waif variation,of (p ai.e shown in Figure .6-t.
. e .

C ,
/

4 FIGURE 6-7.
Thus for a monochromatic wave, (fixed X), a parallel screen onthe shadow side

.
of the slit-screen (the dashed line at x in Figure 6-5), shoivibright and dark bands:.

; . . ..
the bright "fringes" corresponding to q) = 2nr are located on a screen at Mistalpe.
x from the strip by : -. .. , r-
' 41 .

,

(25) : dsin0 : : - : Y l l - =.0, X, 2X; .:. = nX ,
x

, -, e -, . $

i.e., when the.path difference it an integral number of wavelengths. Similarly the

dark fringes corresponding tb (p -4: (2n + 1) r are located by .
.

N.

(26)
y_cl X" 3 X 1,
x -2- 9 2 r '.--. (n -2-r.,' y (n + D ki° , , I %

We call (25) "constructi= interference," and (26) "destructive interference."
(

If we use white light (a mixture of NNYavesof different X's), then alongtthe axis

y = 0 , We obtaii4 white central fringe; however, frohi (25), the side fringes are dis-

placed along y directly'in proportion to and we tfittefore see-bands Of different.

colors: (Analog 'us phenomena the sha ow region of a wide strip were first noticed
by Grimaldi.) Comparing (25) wi 'mea em'ents we find,,from the displacement of -

-

..14

63
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1.

the bands of light of different colors, that the wavelength for red light is about twice
that of blue light, i.e., vr : /.

.., .., .
(7) ,

2,.., ,,
V

, 2xb ,
. .

..A . .4 . a
and that the colors orange through yellow through green.have wavelengths A of length
intermediate to that Of red and brug".

-., .
In the following sections we consider several elementary applications to scatter-

% - - . . ., ing phenomena of £he Huygens Newton -Young periodic wave theory of light. Thesz
applications aregssbciated with Fraunhofer (1787 -1826, an experimentalist), Fresnel

.:11.788-.1827, a theoretioian), and Rayleigh (1842-1919, both]. -
... . . - .

.
%- l'atinktofer Diffraction by a Slit. -We'now apply the wave model to Fraunhofer diffrac-, . . tion of a plai Wave hy a slit of width 2a in a perfectly reflecting plane as in Figure ,

., 6-B: We.take the origin at the center of the slit.

d.

-a

FIGURE 6-8

We write the incident wave as
..- -. -.

, , . \..., ..

(28) tji =:. ei (k?c7(09.eei

and interpret (28) as a wave of unit flux density, traveling in the x direction. .Using
,.,[Hu] implicitly, we regard Ili as exciting wavelets in the TffEkne of the aperture, &id'.1 A

specify-a-wavelet originating at x = 0, y = 0 by the elementary Outgoing wave form
ei -wt) . ,

C (16)-: Similarly for a wavelet originating at 0, 17 as in Figure 6-8-./"cr
as in

.
,.we use '

i

(29)

.

e - )t)
11

VICr
R = str2 -, 2r sin- 0 4. 712..

98
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.



Every point of the line y = 77, x = 0 , for -a -5. 77 a (every line element of the slitY

corresponds to a wavelet of the form (29). We represent the net effect of all such

wavelets at a distant pointy r by the integral

(30) U = j-a uth)dri

Restricting-consideration to r » a, we 'approximate R in the exponent by

(31) R r -
In the denominator we use simply R ze, r , because I U I is much less sensitive to
changes in the denominator than to changes of the phase. (From Figure 6-6 we see

that a'glight cha e 9f the magnitudes of the two vectors has little effect compared to

a comparable chang 'n the phase difference cp .) Thiis (30) reduces to

(32)

(33);

ei (k .r-wt)
"C G(0)

kr

fa
G(0) = j a eik sn in e

- _

i.e., U is an.elementary cylindrical wave (source at the origin) as in (25), times a_
A

function of angles G(0). (the scattering amplitude). Thus for 0 = 0 or ir, we have
fa

(34) , G(0) = G(7) = j di, = 2a ,

twhere 2a is the idth of the strip. For the other angles, we integrate the exponential
. . ..

and; btain _,
,N

,
; C-

* eMa s4 0 _Oa sin 0 2i sin(ka sinb) 2a [sin(ka sing)] sr(0)= G(0)I'ffij ,(35) G(0) ik sin0 ik sih0 ka sin°

, .
where S is the width of the strip rand r ,4s an oscillatory function with zeros at

. .
ka sin0.= lir, n = ±1, ±2, . The limit of I'm for 0 6 is 1...
Rayleigh -Born scattering by knphere. As another illustration:sire consider Rayleigh-
Born scattering by a sphere of radius a whose optical properties, differ only very
slightly from the free space in which it is imbedded (a "tenuous" scatterer). We.use
.the geometry of Figure 6-9 with the sphere at the origin of the coordinates, and take

t

FIGURE 6-9

99
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the plane wave

(36)

as the incident field.,
$

Va

Ui =ei OCZ

We regard the sphere as made up of elementary sources of spherical wavelets,
_ r ei(kr-ujt)such that the source at the origin produces a wavelet C as in (15). The. .4 kr

elementary source at the position P (4, 71, t) excited by the incident held.
*

di (kg- (.0c) produces an effect at r = (x, y, z) describedby '
u0

Y:441
e1k( + R) - icut

kR
I

R + - + (z )2
= (r2 + p2) 75

(3'')

where the phase is chosen to agree with that of J.Ji when R = O. The net effect is
represented by the volume integral Of u Over the sphere of radiug a :

(38) f u(p)dV(p)

where dV is the volume element:

Essentially as for the slit problem.we restrict consideration to r >> a , and
4 'approximate R in the xponent of ullry

' (39) R - ,

where is a unit vOector; in the denominator, we use simply R r Thus (39)
becomes

(40)

.

U
ei(Scr-

'"kr' G(8),
.

\G(0 ) = ik (C -17 )dV ,

, .
U is an' elementary spherical wave outgoing from the origin as-in-(A), times a

scattering,amplitude Q.(0) that is independeht of r but'depends on the angle of obser-
vation 0 (and, because of, symmetry, on no ether angle).

o

Since t =). 2 , where 2 =
z--- is a. unit vector, we may rewrite the scattering

'4

*

amplitude as

(42)! G(0) = jeikP (2-rSdV .

tik

If r = 2 , i.e., in the forward scattered direction 0 = 0 ove hp.ve G(0) = fdV ; V, wheTe
V -is the volume of the scatterer. FOr ktitrary c, the easiest way to integrate over
the sphere is to introduce anew polar axis in the direction 2

lob



L

From Figure 6-7-10.we see that since and have unit length, - is a
a

FIGURE 640

0vector of length 2 sin . Thus we may write

(43)

where 20 is a,nnit vector along the,axis z0 o,f a new coordinate'system. Consequently

0- = 2 sin zo
2

0
(44) / (2 - i) 7 5 =75 202 sin y = z02.sin

,.

where z0..,=;-p 20 iS the projection of Ir along,the new polar axis 26.
1

(45).

v.
We now have

12kz0 sin . i2Kz0 0q(0) =fe .2 dV =
r

dV , K = 2k sin .

'4'4,. I

We introduce the polar coordinaie system of Figure 6-411, so that we may replace

r

6

sz

FIGURE 6-11

-101 .1
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-

' ,z0 by p cos 13 and use dV = dajo2dp sing cift with p ranging from 0 to a, a from
0 to 27 ,

,
-and-ft-from 0 to

,
,.27 ra

(46) G(0).G(0) .= i dai p2-dpj eiKP e°113 sin gdg . . A, 0 0 0 . -- ,
s0,

1 0 /

I

The integral over a yields 27 'directly. The integral over p maybe rewritWA as
:: :. . _ _ J.

r7T

j Ci(eiKP C338) 1 ( e -iKp -e il(15 = 3 sin Kp

? V

-iKp 03 -iKp 1 Kp. .

(47).

Thus, we have reduced (46) to -

I

*(48) - Go; i ,2 2 Kph ..', 4,2_r C,ka sin
a .

Jo p sm Kp ap .. j0 l'-' K
. \ .

.tt...- ,
- .The remaining integral is simply the deriy give of fcos Kp dp with respect to K :

, , . 4 t r
0 / 1, .

'-47r. a fa 4i d sinKa -47/ a cos Ka si00 .
(49) G(0) = .1z-- -c117 Jo cos Kp ap. = K dK .

, K . K E-- K2 '
. . , .

which we rewrite as
09

,-,. ,,--...- - .

., .1

-, :' --e .

- (713., Xa 21CO.Sin1;11.(50) G(0) = V3[sinX
X3

. '

cos )e
Vd(13) =,.,C(0)Jr1,

where V is the iolumcf
.
of the sphere. The value \G(0) = V obtained from (42) for

...

.0 P = 2, 8 = 0 , is also the limit of t50) for X O.:4 Moregenerally, the result.
I ' (51) G(0) = fliV = ,V,

which follows from (42) for ; = 2 (i.e., for forwaic scattering), holds for a scattetett
...'" 4.0,-..',

f vs-%. I
4

: . of arbitrary shape subject to the/present restriction thai it be "tenuous.' . .4z0...
-- ..,..., ; A .

, From (40) and (50) we h ,fie t \ > i0 ,*'/
'-% V t15-'") : '' t 1,

(52) U -,0' , a ,VJ(0) , ,e, .:

'0

-
o so that the dorrespondinVlux density is,troporticinatito V2.

"small scatterer) "), we have J(0) 1, and consequentjy

i (kr ")(53) r ,f U
e

C V

If a «. X We., for a

V

In,the next'section, we,consitler an application of scattering whi;-11 hinges eSsentlially
on the fact that U « Vir for a variety of diffeient soatterers;

6

ve-1
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7. Rayleigh Scattering.
`s

^; 4 A

,In the present section, we digress from the evelopment of the mathematical
model for scattering in order to discuss a beautiful application to nature, this mate-

,.

rial series as a supplement to Sections 4 and 6, and provides a m'Vecompletediscus-
sion of one of the topics touched on in Chapter 2. The development is based essentially

.
on the flux principle [EL], and on the fact (determined by interference experiments,
aS discussed previously that sunlight may-be decomposed into light of different
colors from red to blue with associated wavelengths Xr to Xb such that (approximately)

(1)
1

Ar = 2X,

The wavelengths X associated with the intermediate ',colors of the visible. spectrum

(orange, yellow, green) satisfy Xi. > X > Xb .
4.

In 1871, Rayleigh developed a mathematical model to account for the blue color

of the sky, and4or the red color of clouds,near.dusk. The essential feature'of
Rayleigh's moilk is that when rays of different colors Nifferent wavelength X) are
scattered by the molecules of the earth's atmosphere (mainly nitrogen and oxygen),
the gcattei4ers may be igarcled as secondary sources in the sense'of Equation (4:2141

4

with fluff density proportional to X4 , i.e.,

(2
0

y-
r2

C

4
1U12F0 , ,.^ F =

X

where r is distance from thkcatterer, and Cis independent of r and X. Rayleigh
used a more complete form of Equation (6.38) (one we consider in the last section of

..."
this4;1*ter) to show tat U .x x2 for various scatterers, (e.g., broad ranges of rela- ,' ,

. 'five index of refraction u) provided their dimensions were small compared to X , and

al o constructed a simplified intuitive derivation of (2). . , aw

he ,simplified derivatiortis based on dimensional analy is. hus, if we divide
9 G2t e scattered flux.density F .x lUI: = by the incident value Fo , then the result is

c,nended-a,il ttnit_k_in -Which we measure' F : the ratio
,: If

Foy
2 -G2

(3) , ie' --? ' FO r2e - I\ , ,

is simply a number and,does-uct depend en units or dimsions (since F and Fo are
. _ _

simply different valites of the same physical quantity). .For a scatterer of volume V
,

whose dimef nsions are very small compared to X, Rayleigh assumed.

F 13E2_
[A]: G = '

To r2

where B is independent of the length dimensions of the scatterer. (In Equation (6:53)

we considereda special case of [RI, in Section 9. we consider an exception.) He could
then obtain (2) from IR] thy using diAensional analysis.

,

II 009
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We indicate the length dimension involved in [R I as {L} and consider the powers. .
-ol L that enter the various terms. We have . ;- ...

,(4) a r2 = {L2} v2 = { Lt}' F
Fo

{IP} ,

Which state merely that since r is a length, r2 must be the square of a length; since
i - -.'

a volume is a -length cubed, V2 Involves the sixth power of aliength.'The fact that the

mustratio. F
isdimensirmless (a "pure" number) means tilat B 'of [111 must satisfy,. .Fo

- 4,. .

(5) 6 B2 ..=, {I.J-4} . .
...1..'

tIn view of the restriction on B mentioned for all , he only length par'ameter avail-
:

. ' able for, (5) is X. Thus, it,follows that
, . /

,

(6) '
where g may depend on optical properties (through a relative index of refraction
andAirections. . J" .

C

From (6) and [RI we have Rayleigh's inverse "fourth power law"
, .

(7)

Substituting (1);, we see 'that

(8)

Thus, if a beam Of w

F(X

F g2 V2
F0 r2

.,

4

-T
(2Xb)4 - 16

ght is incident on a small scatterer as in Figure...7-1, the

41

. FIGURE 7-111

,
. . .

blue component t.,f white light is scattered sixteen times as strongly as the red, ie:,. -
the flux ratio of the blue and red components of/served at an angle 0 froM the direc-
tion of incidence is givenla *it

. '4 ,.

Equation (7) specifies the scattered flux density at a point r(0) as in Figure-7-1.
The flux scatter rough a spherical cap on a cone of half-angle a around the for-

en.

ward diredtiOn ©= 0, as in Figure 7-2, is obtained by integration, the areaof the
cap, the portion of the sphere of radius r, is given by r2 times the solid angle C2(a)
the cap subtends at the origin (i.e., 140 is the surface analog of arc length rOi

1041 1 0



0

FIGURE 7-2

encounte?ed in earlier two-,dimensionalvrohlekns114h,Scrnmp42114the.p{plAipangle)
- .

measured from thd diiection of incidence 2, ancl in terms of the angle (p (the azimuthal
angle)measured in a plane normal to z , the area of the cap is given by

, r2r
r2 J d

ra
r2 J dC1 =-= fij sin0d.0 = 271r2 (1 - cos a)

0 0 .

. - . ....
The Corresponding flux through the cap maybe wriften-

(9) r2fa F.0

Substituting (7)into (9) we 'obtain

(10) a(a) = fa g2d2

-r

Aso that a isIndependent of distance 1.; If a = 7i, tthen' "
the cap becomes a complete

0 sphere; the value °(ir) (called the "total scattering cross-section") is the total flux. ,.ta

scattered in response Woo incidept plane wave of unit f}ux density. If the incident. ,flux density is (say) II , then the total scattered flux is Iiia(z). . .....,- % . . r.Ar r. .r

, . . * ,.
14 us now visualize-an incident beam of rays flowing through a tube of crops-

.

,dctiorial area S as in Figure 7-3, and' apply the 'Kepler-Lambert flux principle il<1.,).
/ ,

The flux through S at zi is II S, ana from [KU) this equals the flux I25 through the.
--

r

. -
FIGURE 7-3

;-
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, i
3

surface
.

ace at z2 plus the flux through the intompliete sph rical surface consisting ofS

the sphere minus the cap ak., i.e.,

(-11 - Q(a) =
.1:0

r,f
7T-a

r2do , f_

_
d(p Ja sinOcifi ;

where the integral is over the incomplete spheiical s face. Thus, from [KI,J,

(12)

Regroqping terms,we have

(13)

'IS, = Ir Q(a) 12.S

I2S = I1S - II Q(a

`which states simply that the flux in the beam of
,
kr S at z2 equals the initial value

S minus that diverted to other direction's by sca eying out of,the beam.

(14)

,Fr'om (9i, (10), and 111,we have

Q(a) 6(a) -

which we rewrite as i

(15)j Q =
A

,
.: in order to emphasize the dependence on A. If we neglect.oEce) anct approximate Q,

. .

spitethe total scattering cross section otr) (i.e ., if we ignore the "hole" in the spite cal
surface), then the difference'between the initial and final values of the flux along a
parallel beam intercepted bygliltscatterer anywhere along the beam is

A , (16) I2S - fiS = -I1Q .
,

If thee -aiie N gtich scatterers in the beams thenAnder appropriate re.,.,stfict,i'ottsw...se.
:.

,Tapoe (16)With the right7h4t aide mul lied by' N.,ScoapproXimate-the net eff-eCtCr,
7 ...; . "'t ; ,8 Iliy .t,r,....-1( '41 ', 47ft, ".,,,,,4<,. .,.

'''' (17) ..-1' ,4

,, - sr. : ''' 34.-

If there are n scatterers in unit volume in the geometry of Figure 7-4,,then we ha've-

i .

. . . .

t.;

N = nS(z2 -zi) , and: (17) reduces
\

418) r I2 - I1 = rnQII (z2/7 zl)' .

. . I 2 , .
. 4 :1/ . . - . . .

FIGURE 7-4
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;
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In the limit as z1 aepproa es i2, We obtain

4(1.9)' dz

and consequently

(20) . ., . )..$,.... 4 ,,= Ioe;;Wqz-,...., .. ,.: ... ..../ . .

with I0 as the vale at say t---°,p .
AFrom (36), e have ,Q=
X4
, ,'s,o that

-. :

121) o
4 '

which isthe form considered. in Chapter 2. Consequ tly I().) decreases rapidly as A
.. . .

decreaseffiand white light becomes (progressively wi h distance) relatively stronger
in the red-yellow'conworients beFause it is losing its,blue components via scattering
to other directions, Thus, as (7) accounts for the blue of the sky in directions other,..,

1

ti

than towards the sun, (21)accounts for the, redness. of he eloucis.illuminatedly sunlight
near dusk. See the discussion of (6), in Section 4 of Chapter 2;

° 'Equation (1) gives the scattered intensity for one s atter'er excited by a wave' 4.
unit intensity. If one scatterer ,of a collection is.4 a di lance z from the entrante
facie of the region of scatterers (as in Figure 7,-5), then we-multiply (7) by

.

.

FIGURE -7-5

ts,

-I(z) = Ioe. flQz of (20) to account for theintensliiIciatiethe excitation that reaches it
Similarly, if we observe a scattered ray from this scatterer at a distance r from its

e t - 1

0

t-

4°,

azN, I



center, we incorporate an alitional factor e-"Q1'1,,to account for the additional loss.
.

Thus, the scattered intensity for one scatterer as in, Figure 7-5, beccomes

' (22) F g2 V2 Io e-D(A/4)(ztr)
r2X4

.
where z + r is the total ray path within the region of scatterers...

\ (23)

Let us rewrite (22) for z + r = 1 as

B _-,F = e
D/x4,

X4

°a form that shows that F vanishes for both X 0 and X 00, and has a maximum at
a definite value of X ,say X = A . Differentiating (23) with respect to X , we obtain

(24) dF
dX

dF dX-4- Be-DX-4(1
X-4D)'dx-4 dX

which vanishes for the wavelength

(25)

corresponding to a maximum scattered intensity

(26 FA' = e-1
13.='

A.4 Me

Di 'ding (23) by, (26) we write the scattered intensity as

4 1- A4/-kft,, (27 = F A, 2,4,

so at F is expressed ,in terms. f th maximum yaltte FA
wave ngth A . This simple mod 1 ap lied to slielight gives
in the lue-grea4tregibn qewstintg%9euttu.

= D =A4

oloosoro4-,4, '4

3' 4 a -

o j

108 1 4

and the eortesponding

a maximum wavelength
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8. Method II( Stationary Phase:

,We4are nOW.,1)1 a,position tabridge the gap between the geometrical optics ray

procedures of the early 'sections and the elementary wave procedures of Section 6.

/,We
do so initially by considering diffraction by a strip. We work with the wave forms

of Equations (28), (29), and (30) of, Section 6, and the geometry of Eigure 8-1. Thus

a

11,

0

-a

)1.

FIGURE 8-1

R

r

we takethe Incident wave proportionai to

)
(1) Ui = elk`

a."

the wavelet from a secpndary line source oaothe strip as

(2) U =
ceIkR

1TR
R = x2 (y - 77)2 ,

and represent the net effect of the wavelets at r as the integral
;.,

(3)

a fae"ncR -*"
= u(n)dn = c,1 .

-a kR

x,y

We have suppressed the time factor ,e-iL't for brevity. The actual wave forms are
obtained by multiplying the above by e-i" and then taking the real part of the result.

situation in Figure 8 -1 is analogous to that of Figure 6-8, and if we
f

assume R >> a =k .1 I 1. I we obtain \the same forms as (32) to (35) of Section 6. This

if we expand to first.order in -U (a4 previbusly);we obtain R. r i sing, and
consequently the

(4),

previous

cenc`)

procedure,,yields

ra eiknsin e d 0
-a

.

e il'a sin° e-ika sin e ceilcr
2

74*"

sin(ka sin0)

at

ceikr 2ar(0)

liEr

ce i,kr

V kr ik sin°
a,

kr ka sin° ..
/717
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Thus; except that the constant c may'differ in the two cases, the present result (the
Fraunhefer approximation foi "scattering or diffraction by a strip) is the same as that

.for the slit. (The relation of the result for the strip to that of the slit shown by the
above is a special case of what is called Vabinet's principle.)$ c - , ..

We introduce y = ka sin.° to represent the phase difference between the rays
from the centet and from a° edge to the observation point, and write r 's (the- . 7"rillynhofer, pattern factor"). The principal maxima of F.correspondto y = 0 (i.e.,

. .. - :- , . . ..,-to the forward and back direc;rEifF,=6i7 rand- r respectik'ely). The secondary max,
, - -.:-4,- . ,ima of r occur 'Ville ;e1.0,of Tan yot-,y , which are given approximately by y ,-=-1 1.43r,

. 1 ,-* -2.46r, 3.47r and, for larger vilues,-by y ;=--' (n + 2)r ; for.the first three of these
d r .zeros of we have r , - 0.22 0.13, -0.09 respeotive-ly. The zeros of F corre-d7' ...--- ---- .---. 2,----)

spond to y = nr. The angiklar half-width. of the principal maximum (obtained from. ,
the position of the first zero, y = ra sin° = 7) is. sill° z.--- 0 --- -- = .ka 2a "' . ',.

The form' (4) is uestricte r >> a. lip order to consider situations where r
and a are comparable in,magnitud , or r < a, we use n different approximatibn for
R in (2). Thus we now relax the requirement r » a kid assume instea that we., .

. , .. . - ---,

,restrict thediieetion of obserVatioii.fo e neighborhoods of the iorw d scattered.
(the direCtion of incidence) and back'scatt red,directions. .M
(y - 17)2 << x2, and use

x.pllcity, we assume

(5) R = ) x +
.$

We use (5) in the exponent of (3), but i he denominator (essentially as for Equation
(32) of Section we use only the leadi erm R x thus '-$

(y -71)2
2x

6 U
de ikx (tom

-a
1/0$1) 2/2. 4

%
i -e Yis . tk0'; 1. : :'*141cit

The' present integral describes Fresnel diffra ion by a strip. ... -
i; -.. .i ,. ,

After we have analyzed the behavior of (6), we treat the analogous problem of
' 'scattering by a circular cylinder A limiting case of the result We obtain will corre-
.' spond to our geomOrical optics results p form

.
i Sections 2 and 4 in the for

I '
i ..-\ ,

. ikL 'H i-xl- , - 1 ''''-'--"-ii-, di. ,

fiCffi'
. -
where 'L11 is the ray path obtained previously by usingHero!: principle LILT, 1.41ps-
its second derivative with respect to a parameter along the circle ,aild F is theiluic
density obtained by the Kepler-Lamber,t principle [KU . --_ __.s...-,,...,,,

L ,Our derivation of (7) from (3) will obviate the previous special assumptions. Iii.. _--
particular, we will not have to assume Hero's "principle of the extreniffmAth7" 7

' 1-1,0 ,., 1 1 6



Statements such #s "nature prefers an efct °mum,' "nature abhors a vacuum," etc.,
may be useful aids to memory, but "nature ' neithe "prefers" nor "abhors," and

.

such statements make our mysticism too e

[HI is merely a consequence of an approxi
n

The approximation procedure is known

introduced by Kelvin as a mathematical m,e

that come up keguently in wave problems
of the form U =..fuds, essentially- as in (0.,,

.

e will show that Hero's principle
ate ev luation of an integral.

s the m thod of stationar hase. a was
IS)) > 'cr )" A

od for approXiMating a glass df integrals

he integrals we are gpncerned with are
I

Intuitively, the method is based on Young's concept of interference, and the
essentials 'Were discussed fox Figure 6-6. A complex riumber:Ael9 may be repre-
sented as a vector of lengtih4*A,anddirOaon angle (phase) 19 on an Argand diagram,v v, icoand the resultant of a set of numbers Ae n is simply the vector sum Test = EA e n

shown in Figurek 8-2 or 8-3.
.
If the phase angl s are all the same, then the elementary

) j .
-

*

I

cp
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vectors all point along.a straight line and T = EAn : we say that the vecturs'reinforce _

each other, or that the elerrtar? waves' "interfere construcqvely." On the
1hand if the angles are that,the nose of the last vector ends up at the tail e

firSfrilicm),a closed*Polygon, then T .= 0 ; we say that' the;reCtol% cancel, or that,

the element.swayes.:Interiere destructively.',' In theliVualiOn shown in Figure 8-2,
the pliase On _changes slightly (varies slowly) Wail increasinglin'and the resultaitt

magnitude T is close to its maximum value. In the situation shown in,Figure 8-3,
the variation of (pn with n is 'large and T is small. The An and (pn may depend on
a parameter 0, and the magnitu0 T(0) of the resultant,

(8) T(0) eir(e) =
iv (0)

An(0)e n

may assume any yalue between 0 and EAn with variation.of 0.

Sirniilarly we may use the same idea for an integral of the form

(9)
'712

i`P(n; e)
71i

'

The integral of (4) is of the above form, and the series of maxima and minima shown

by the r'esultunt can be interpreted graphically by means of a vector diagram such as
Figure 8-2. Similarly.for the integral in (6).

Ind we earl express (p in terms of a parameter 01 and then find that `j2 = 0
dO

(and d 0) for some set of values of 0(say 0a) , then we say the phase is station-02

ary at O; for these valu6s the situations are analogous to Figure 8-2 (not,Figure
and we expect the resultants T(On) to be large. Before discussing the general method
mathematically, we first consider the strippToblem without using the method exptic-,
itly. The results we obtain initially by relatively familiar procedures, will provide a

basis for introducing labeld and concepts for our subsequent more neral discussion.

alFresnel Diffraction: We may express (6) in terms of the tabulat

(10) , 'gin0 i= j
r,i ni.

01'7112 n = -.9(-nt) ,
, , ,4:.f . 9

,--

whose path in the Complex plane (i.e., the trace of the point yii§,p function .of--,5--
: °

no generates Comes spiral of Figure 8-4. The magnitude 149001 = T:(711) is an
r.img :,oscillatory function of r. Figure 8-4 for (20) is a continuous analogof such cases

of discrete vectors shown in Figures 8-2 and 8-3. Although the "elementary vectors"
of Figure g-4 form a curve of infinite length, the curve spirals ii around the point
1 f k; the resultant '1'2' 191 approaches the limit ,-- as r) i -; co' .

,

7

112
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1

FIGURE 8-4
A

We noW consider 9 (n) analytically. 'or large values of nl, we use

11) ( f f .ei -) 2 / 2 dn = f (eiw7)2i 2)
0 ni n

Integrating the second term by parts, we develop (.11) as the series/
2'ilrni/2 r

02y
...

t .7.(ni.-- 9(-) + Li + "-L + - .] .
urn 1 2 e

PTI11

.-

.
. .

I.

Thus the erro6n using the leading term ..7(co) is. prOportional Plb -1- . The leading
! 1 "1 ,, ---- , I 1 ni-ak

term itself, i.e.', - , 1 :,,
4 4 ' .1 1 /...

Oftilii. t ,.'

1

, i

'
(13) 3(09, ,. f .0iire/2cin

N
,.+"

0

6. - , -

\ ...

can be deterMined as follows.
Or."'"

1 'Let its s consider fiist
, .. :. } -

(14)

.

The square of t,T may be written as

(15)

g-r

tz,

. . .
so ,... - ooi .. . -4.,

,t2 = f e-x2dx i e-Y?sly = f f e"-lirx . :---__f_
13 6 0 0,<, ,

'... r - ,

1131 9.

itf



.

Introducing polar coordinates' r2 = x2 + y2, tan q = we 't'ewrite ( 5) asx

rrr/2 rco
(16) = e-r2rdrdco = 7-1.4 e-T2

' 0 t' 2 0

Since d(e',"2) = -2re-r2dr, , we obtain

00

J2 =.7-7r f d(e-r2) =
4 0 4

(17)

Thus t14) equals

co

=

.
Similarly, we have

, i5;* "00

(19) f e-B.2 dx =

which is known as Laplace's integral. We treat the integral (13) heuristically by
using B = - 2 to obtain

,,

(20) 31:0) = .1 1 + 1
(cOs = ein/41 i

which corresponds to the vector from the origin to the terminal point of the upper
...

spiral in Figure 8-4. [The result may be verified by Cauch3Ps theoreni. If we use
r .

n = i)/ der in (13); we obtain j eb,. 2d(1 +j)/ .17 where the path is along thy'
45° line in the complex plane. We r place this path by the positive real axis plus
the arc from 0 to 45° at infinity; the in egral over the arc vanishes, and the integral

. s

_ over dig real axis leads essentially t (18).) e
,

On the other hand for small values of ri, we expand the exponential of (10) as a.

, series and integrate term by term
.., .), ;

. .. . 3

(21) 9(711) = in 1 k + 1'1 +
iirn,

+ : .
0 2 ] dr; = rit .4-

d , I

irt

Ili terms of (10) we rewrite (6) as.-;

AO'

Lek
ikx

U= ,

307) ,(23)
71_

114
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Before applying th result to the strip probleni, let us first apply it .to an "infinitely
wide slit," and dyterrnine c for the Huygens' tree -space wavelets that ,simply serve
to regenerate the incident wave. For the limiting case .ka w 00, we have n± ±-.

"Using the limiting values of J obtained from (10) and (20) we obtain

(24)

and. consequently

I 3 (c4') 3 (°1 = 23 (co) sf21 1
ft r

. s i
ITT ei /A e--iv.

(25) U c- ,
,- .- kr .

. _ .

But an "infinitely wide slit" neAs no obstruction, so that U of (25). must equal the ,

. incident wave e' . Consequently, the unknown constant c of (2) and (22) for the

elementary Huygens' sources is

(26)
k /A

C e
1-27

More generally, if we are dealing with the secondary sources on a scatterer excited
Iiy the incident wave, we. may write .

r
. ', 1... , . . .

t` - k ..",4
(27) . , c e , g ,

1-2-31.
.

°( / o

where g may depend on the material of the scatterer, and on directions. Thus we
,.

.may rewrite (22) as , t

'.e t 4 f
r, .g k

(28) U = g ---iTri'l [g(n+) - ..7.(7/ A ei'c , ni = C.,--,-,{±a.- y) ....'
..., . co. ,,ff

We now apply (28) to scattering by a strip as in Figure 8-1. There are essentially
three differeni ranges of y that we consider. I

....AA^.

A . 1 . A> In Figure 8,53-ve specify thee different ranges of y at a fixed value of x, day..,
..

-....-, three different portions of a screen placed parallel to the strip. We wilt use (28),_(12),-...

and (21) to obtain explicit approximations of U for the three ranges.of y Correspond:
.

ing to the-braces shown in the figure. The range yz is centered on the geometrical,,.
projection of t edge of the strip (equivalently the neighborhood of the shadow boundary.
y = 4), and the range i includes much of the geometridal projection,.(the shadow) of

t /

the strip on the screen.
j.4

The range of yi corresporids td n+ »1 and -n » 1, and includes y 7 0 as the
special case n+ » 1; the range of y2 corresponds to n+ 0 and -n_.- » 1;
the range_of y3 corresponds to -n+ » 1 and -n_ » 1 . If we replace x,rby,
xl.,. lyi, then the results will apply not only for the three sets of points (x,yi) in

the first quandrant shown in 'Figure 8-5, but also to the sets obtained in the other

u.51 2 i
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I

FIGURE 8-5

1'

. . .

a.

quadrants by..iieflesting the three given sets in the x-axis and in the §-axis. If, say,
An+ F TI 1 » 1, we approxim'ate the integral by the first two terms of (12) obtained by

; . .,
using (20), i.e., `--s .: .

2 , ,,. , " Iffni/2
e e -,-

+.7(71i)r--- ipii . ni >> 1;
V 2 -,..

(29),

however, if ni is veryAmall theniwe use only the leading term of 0),t ..

(30)
I-

9(711) ni , ni 0 .
.

At i point. ,x, yi (or more genera lly thethe lour points I x I ,' .1y0i,-we have

±nI V 1lx1(a
f)') » 1; subAituting (29) into (28), we obtain ot

T

k
. ,

(31)

where

e ik Ix1
+ g (-71 j

.
.

0
I xl = x as

U..

2-/, geilaxl 1 -
.,-

is not.necessarily

2
eik(a+Y)2/2tx1IXI [ei*-si /21x1eiff/4

27rk ' a y ..a + yi.
.

-
the sae for the forward scattered direction

for
t
the back scj attered direction I xl = -x . Essentially as for (5), we require .

I (a.± y)/x1 <* 1; subject to this we see that

,(32), U geiklxi as Ildicti"± YA1 0

116 122

t.



Thus in this_limi.tAgostrip is a ofie-dimensional seconaa-ry source.' Taking into

account that U IS in general a function of direction, we write

(33) U± g±e*Oa fbr x 2 0 .

In the forward direction, we require g+ = -1 in.order for ageometrical shadow to

exist in the sense of Section '2, i.e., U+ "" .RSimilarly for the case of a perfectly.

reflecting material, we require I,gL I = 1 in order that the ratio of the reflected to-e
incident flux density (t-U JU112) equal the previous result unity. Thus we have

.(34)
U_ g_eikx for ' x < 0 .

where 6 is a real number determined by the material of the Strip (or, equivalently,

by the boundary conditions). For pMent purposes we take 6 = .0 , so that

(35) <

physically this corresponds for example to a water wave'or a sound wave mbident on

/ a rigid immovable strip, and also (subject to additional conditions) for the reflection

of an electromagnetic wave from a Metal strip.

We introduce the abbeviation

piefixl+Y2/2Ix1)
(36) ue(Y) = eiTY4

2irk Y

U ellc5 for x < 0 ;

so that we may rewrite (31) as ,

. . 1

(311 . ,, 4J, ,'----1 T e*Ikcc + tie (a - y) + ue-(a + y)]
- - ., ...

The present results apply for
. the geometry of Figure 8-6.', From (5) we see that

x

- FIGURE 8-6
'

x t (a y)2/2x so that the exponehts of ue (a y) are approximations of kEt. .

The factors kR±
are the phase changes of waves traveling from the edges

2J17



of the strip 0 , ±a to, the observation point x, y So that we may interpret ue (a ± y) as
the edge waves corresponding to the edge rays discussed in section 2. Thus the nor-

.mals of the different waves of (37) shown as directions of propagation in Figure 8-6
are also the rays corresponding to such paints as P3 in Figure 2-17(c).

In the region of the geometrical shadow the.total wave UT is the sum of
U1 = e1 and U4. :

(38) UT+ = Ui -ue Y) ue(a Y)

e . , the shadow forming part of 1.3+ cancels the incident wave and we are left only with
1 X.the edge waves or diffracted waves. Thus, corresponding to (38), since lUT4.1 2 -k- ,

a "perfect shadow" does not exist for noti-vanishing X , the diffracted field is small for
relatively small x (in the immediate vicinity of the obstacle), but it.increases in magni-
tilde as x increases and the shadow "disappears" with iii easing distance from the
scatterer. (However, alternative forms are required for either x 0 or x 00.) The
field UT+ is oscillatory both in x gird y. The flux density along the axis (y ,= 0), cor-

e
responding to IUT +I 2 with - ,

(39) UT+
V 2x

e
',TA ikg

rrka2
rt )1/Ti. a2 ;..e, + a2/2x6,

is a relative maximum, this is the analog of the Arago "bright spot" discussed fOr the
,disc. In the back-scattered region enclosed by prbjectioni of the strip edges parallel
to -x; we have

(40) UT_ = Ui + U_ = ikx + eikx u (a - y) + ue (a + y)
. .

-..o..^* .where e-'1" i-s the geometrically re-flected wave.

The above iesults (31) to (40) are
0

subject to two restrictions: the first,
4......, I (y - a) ixli< 1 , enables us to use the approximations in (5), and restricts us to ob-

servation near the back and forward scattered directions; the -second k(a ± y)2/I x I » 1
..f .

is required in order to ti- e.approximation (29) for J. 'The first bounds Ix I fliam below
(I x I >> a), and the second above. Together, the two restrictions also state Ihat ,;...

ka --,21ra/X >>> 1 (i.e., the strip is very wide compared to the. incident wavelength, and
that y cannot be near ±a (i.e., y cannot approach the shadow lines or their analogs int .
the "lit region"). The corresponding edge wave ue is the "near - caustic" form.

A

We cannot use (31) to (40) for a point y 2-- a in the range of y2 of Figure 8-5. In

that region although = (a + y) &2a >> 1 , we lee that ^. 71x1
-^q+ = 7:-.1k (a y) 'thus, in the general form (28), we still use ('29) for 7(-71 );,
but we must use (30) for .7 0+) . Consequently at the four points Ix I , 1Y2-1^-, we obtain

I

et

-F



. .

(41) k -irr/4'(a _ y) + - -
1x1

in /4 gik2a /1x11
= klx I

27rixl
e

2nk

The second and thi-r-d terms are of the form considered in (31). The first is a cylin-
drical wave, i.e., trIeWay._751 a line source pn the edge a "true edge wave dtcreas-

,
ing.as 1,',57 with inereasiii- distance. The third term becomes negligible for very
large ka , for whleh-case Vie total field for x > 0 reduces to

' (42) UT+ = Ult + U+ H(kx) H(kx) Le:P°c\F e-"/417rkx
- 31)

thus the field in ths- neighbor-hood of the shadovv-line is half the incident wave plus a

cylindrical wave corresponding to a line source with source strength proportional to
-E
1k(a y) . As y , we see that UT `-~ UT linearly; this holds, whether y tipproacheS

a ftom above frOm."above" or "below" in Figure 8-5. Similarly for x c 0 , we have

.1 (43) UT_ U1 + U_ ellcc-+--e-ikx H(klx1)k(a -21)2

In the range of y3 in Figure 8-5, we have -71 >> 1 , and we again e (29) for

both Fresnel integralg in (28). Howevet, in contrast to (311, the'scatter4d wave at
the four points lx1 , 13731, is given by

eiklxt -41T/4 [_9(-71.4.)-+ 9( -71_]U±

( )
, jeikrxt''

°

. .
;eik(y-a)2/21x1

+1.,

eik(y 4.3.g/2 ix]Ix1..,iff/4
2irk y - a ' P"1" a

. ,
., - -- -Elie (a - y) + ue (a+0 ,-. . -, 4 , A

so that such poilitireceive only the edge contributions of (37).

The above explicit approximations suffice for present purposes. A more com-
plete discussion of the probleni of the strip is given in introductory texts on optics in
which the field at any point in space is usually 'computed graphically from Cornu's

spiral Figure 8-4:
'.4

,r
Thus up to moderately-large lx1 the scattered wave is largely "confined" to the

*rip senaelhlivithin this strip we obtain, the geometrically.rreflected
, ---and shadow forming waves. These two waves correspond to the waves,scattered by'

an'infinite plane, however, superimposed on these are the additional waves. that we
interpreted as edge waves. Because of the additional wave, theeshadow is not
"Perfect;" careful observations (subject 6 the present restrictions on distance
parameters) on the shadow's of scatterers haNAng very regular edges show a system

of bright and dark bands parallel to the edges of the scatterer (a "fringe system ").

,
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We now determine the number and separation of such extrema that may be observed

birdie shadow region on a screen -.parallel to the strip.

-We use

' (45). d (Sz) de
Ty- Jo F(n)dn =-F(q c77- , = (y) ,

to differentiate",U as given by (22) and (23), anti Obtain

dU
(46) 7,-, c'O -4__13,(n ) - (hl)] =

e2drefna,o5-:.0 :Obtained from dU/dy = 0 , corres nd to

(47) e'..."''
2
4' = e -IITTI2 /2

.

4

dn+ dn_ dn.+ dn_
dy dy' dy

, -
. Consequently the exp,onents must satisfy

. -

(48), -i (n÷ n_) Tc.,- ay = 2nir ; I n = 0, ±1 , 4ir 2 -2 1--., 2k

4". . it o
.

The separation of extrema is. thus` °"

(49) I Ya.t Yai = ,Ay = ka

and there are N extrema, with N given by

1'

(50) 2a 2ka2 4a a

. Ay irx

in the geometrical projection of the slit. Thus the number of extrema increases with
increasing strip width, ot,with decreasing.wavelength, or decreasing axial distance-.

Before continuing the main line of this section, we consider the range of very
large I xl excluded in the discussion based_on (29). If Ixl becomes very large, so
that "a Y)2 0, then both n÷ 0 0 in (28), and we approximatemate both

Frasnel integrals by means, of (21).\:Thus

-ejklx1frCH [a 3i ÷ cyje.,71 frit

.TrIx1

virkd e-1714,eikixi ka .÷.--TH(klx1)ka

Thus for this caSo, the scattered; field is essentially that of a line source of strength
We derived this re-sulfivia (5) which means that it is restricted to angles near, .

the forward, and back directionscoMparing with (4), we see that (51) is merely the
special:case of (45 corresPonding,tO 0 # 0 , a , and that for other values of 0, the
appropiiate form of Uat-large distances is simply ±H(kr)kar(0).

.*
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v.

Method of-Stationary Phase. We have discussed the prelimina:ries, and can now turn

AO the main, topic of this section. Iii general, we consider artintegral'of the form ... ..

(52) eikL(x)k. lc, »t 1
.--.. ..- ,

,..,
41i r'7-1

..
& .. ..

.........,

where ( is a slowly varying function of x compared eikL(x) in the sense that Q ....-

chang6 billy by a small fraction of itself when kL changes by 27r . If there exist"pne
.. ,

or more dLvalues of x for which dx vanishes,vanishes, then the principal contributions to the

valueof the integral arise from the neighborhoods of the extrema. (or stationary

values) of L , elsewhere the contributions cancel through destructive interference as
defined previously. We reiterate that the intuitive basis of this idea/ is the recogni-

A

ti n that on an Argand diagram (as in Figures 8-2, 8-3, and 8-4), a is a sum of ele-

m ntary vectors whose direction (essentially the phase kL) is in general a rapidly

tingingnging function of x , so that the resultant I is Consequently small. However, if.
't dLre exists a value of x bar which- dx vanishes, then the phase is stationary at this

,v lue and only slowly varying in its vicinity; the elementary vectors near this value

,, a e almost in phase and add to give a large result.almost \
Proceeding analytically, the, Taylor's expansion of L(xj around some value x3 is

3) L(x) = L(x3) + V(x.3)(x - xs) +111,"(4)(x--x42/2 + - ,

\j

44e,

here V(4) mennardifferentiate ..L(x) with respect to x and then set x equal.to x3;

imilarly for the second derivative L" , etc. If a value x3 exists for which V (x3) = 0,

en

)
. L(x) = rI(x.) + iv, (x. ,(x xs')2

I

' 2 s.
I

l
ASsuining that .1/(xs) A 0,4ind that the higher order terms are negligible, we keep

. , . 4. , -- ,

f, 4 only up to quadratit-terins in the exponent of (52). We replaceihe sloWlY varying .

4 (
.-,. function G(x), by its value G(x;) alithe stationary point (the point marking the center

of the region in, whiCh the integrand contributes significantly),"and work With

P

4

(55)

ikL(xa ) a4. ikLtt (x)(x -x.)212
I :;*,' I3 = G(x3)e J ,e dx

.
404

= locoeik.L1x$,VkLAx.) (7! 4.) 3(73)1:,

71± V 11"

(a}

where43 is the Freenel integral as in (10)ff.

1 X27
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In' particular, If *III ..?, then 9 '''- 9(co) of (20); we have
and consequently l
(56) Is Gse

145+ in/4 2.r

kL"s
1 \

\) ' ( b k , 1

where 6ie subscripts indicates that the function is evaluated at the stationary point
x,. (If 'there is more than one stationary point, then Is is a sum of such forms.)

9 (°.)- =

-Compare (56) with (7).
.

Before applying (56), I t us show that it is actually much larger than (521 for thed'
-1 .4case where the integral ha no stationary point. We show that if there are no statiori-

1aryivalues.of L , then the Integral (52) is only of the order as compared to Is,, 1whioli(from (56)) is proportional te.,,Trc ; since
-
k >> 1, Is is therefore much larger.

. To see this we introduce. L as the new integration variable:
-- .

1 +
.a

fl', (aTh-) k_1(111''' etki..di, = 4-(57), I = j G(x)eikL(")dx = f
j.L(a+)

[MI] d (end-)-a .1L(-a )' L' 1K L(-a_) 127 / --,.tiN . -7, -

and integrate by parts in order to develop I iri4owers of 1
k-

I ,1_.[Gill' eikL1L(a+) d 1 etki. L(a÷) -ik L k2 dL /L(-a_) L(-a_)

Thus as long as L'/G does not vanish in the range -a'' to a+, the integral is only of
1,

order k- and is therefore much smaller than the stationary case I, of (56).

-As a firs 'illustration, weVply (55) to the original integral (3) for the strip with
the constant even by (27):

(59) U'= g4e-FW4 I ,
fa pikk

I = J
Vri,

do R = IK2 (y - n)2 4

Comparing with (52), Welsee that G(ii)11,kkd that t(ni = R(ti) . IntrOdueing .
1/

as in Figure 8-7, we dIfferentiate to obtain
R

,
(n)

, .

(60)(
'dr?

. FIGURE. 8-7

n -Y -
,CZ ÷ (n Y )2
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(71 37)2 cos2q)
(61) R"

x2 Tip 1c7 ,(y 0213/2

,_ ( (71 37)2

R2
R

,The stationary values correspond to R' = 0:

; (Ps = 07 .(62)
.

Consequently

(63) Rs = fx = lxl , IR' I =
cos2 cp 1 1

Rs Rs lxl

Substituting into the integral of (59) via (55), we obtain

(64)

a e
do

1 ikRs.

at; V k
{.9 .1111.7 eikbop lo -9

/kW;
71± -- V r (±a ns) VT7ciir y)

Introducing (64) into (59) yields the earlier form (28). The limiting fOrm based on
(56) gives U = geiklxl as previously, with'g = -1 from our "shadow condition."

We may generalize the above directly to an arbitwy angle of incidence as in

Figure 8,-8, Theincident plane wave maybe written

oe

FIGURE 8-8

(65) ul = encxcos at thy sinct,

Y

which is merely the form of (1) obtained by rotting the xy coordinate frarcie through,.

an angle -a . Since the phase of (65) is zero at the origin (tie center of the strip),
I,

Nit

..:1
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ti

the wavelet originating at the origin has the same phase as obtained from:(4., -How-
ever, the wavelet originating at n is excited by Ui (0, n) = elk'? sins -so-that ifs phase-
contains the additional term ,kn. sin a. Thus instead of .(2) we have ';

1 :it .

e + ikn sins(60

and we replace (59) by

(67)

- u (n) = c

fa eika + s in a

-a %/KR

where the appropriate yalue of c will be aeterrhined from a limiting case.

Corresponding to (52), we take G = carCR to be slowly varying,-and differenti-
ate the phase

(68) L = n sin a + /x2 (n -'37)2 ,

with respect to n We now have

(69) "- = ;sin a + sin rp ,

The stationary values correspond to

cos2 (P.
R

;i(70) L' = sin a + sin ( p = 0 ; s i n - (p = .7,a, 7T + a , .
which contains'Eucliclis principle eflection and the principle of Shadow formation.

/1 V _ 71- Y fSince sin (p ,.. , R- c cf) , we see from (n) that y - ns-= lx1-tapa,,
. x

Rs = x sec ( e = I xi sec a ,

(71)% Ls = ris sin a 4- x sec (Ps = (y - 1 x1 tan a) sin a + 1x 1 sec a = y sin a' + lx 1 cos a .

(72) as2 aL'; = clRs

Substituting 'lnto (67) in terms of the limiting form (56) we obtain

I
U e

cs +nci,s+ilr/4 27

INFTR'" .--;;WIas

e*ilcccos'cl+ itcy sins Cs fiTT eiV4 = Ukcosa ±

IR*

Comparing U+ with Ui of (65), we'detePriline cs from the shadow condition U+ -Ul:

C OS a e-itr/4
e(74) cs- rr

124 130.,
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-vise ';

which differs from our earlier result by the additional factor cog a . Sirrillarly the,cor-

responding value of g for a perfect reflector as for (31) ft, is now replaced by gcos«.

Using the more general form corresponding to (55), we now have

U geik1s1 cos cc + iky Moo( e-117/4 1 [3.(7L) - (tr_d
47

- j
ir lx1 seta

cos a(±a +-.1xl tall a 3')..,::*- '
,

f
V

-,- - . ,..
Circular? Cylinder. Let us now apply the same method;to consider scattering of the

plane wave (1) by the convex cylinder as in Figure 84 The point Op) On the
--,,,'..-- -

4

X , y

FIGURE 8-9

cylinder has the coordinates a co's cp , a sin 99 , and the excitation at the point is

e'ka "sr. We write the corresponding scattered field as the integral of u over the

arc oder);

(75)
i.3 7r/2

u e ix(R +a cos(P)adc0
7r/.2,1 liEjt

k
, e

We do of know c completely, but the result '(74andthe corresponding form g cos a '

suggest the generalization fitwkich-.9,, (t1;4jk of in ence with respect to the sur-

face normal) is replacgd by the present analbgi: tp '. Thos fOr convenience (and as
. 4

can 'ustified with a more conVete modelywe use ','".

,,,
. - 4' , ' f31r/ .. e1kt R + a cos ci, -

1j = Ti-r e , I , I=It- -i,,i4 , _ cos cpthp,
ir/2 ",

.
...,

..," - ., ,.

and we shall ee that cos (e iv.' the integrand is appropriate fox, botkgeometrical re-

flection and shadow formation. We consider only the range 0 < '0 < it explicitly;
,.

however, the result's may be extended to a11.0 by introducing absolute values of the j
7

Alp; .

' trigonometric funCtions (as required to preserve symmetry).
I

tr

c.

roC



The phase of I }s proportional ,
(77) L = R ;- a cos <p ,=-- 11'2 a2 2aras(4) - 0) + a cos ,

and its derivative

(78) dL
R

arsin(y9 - 0) a'sin(p
thp

vanishes for the two values (p = qL or (p-r, , such that

sint(pL - 0) sin(PL(79L)-

(79D) O

RL rL

sin((PD 0)
RD

sin(r - (pD)
.

Fc:br a given value of 0, the phase has only one stationary value: the value may cor-
respond either to geometrical reflectionas in Figure 8-10, or to forward scattering
as in,,Figure 8-11. The first value applies for y in the "lit" 4egion L in Figdre 8-10;
the second value, which yields the shadow forming .ray orresponds y in the
"dark" region D as in Figure 8-11. Equation (79L) corresponds to Euclid's princifle

sofereflection, and (79D) to the prinoiple' of shadow formation.

--.

0)

iFIGURE 8-10

:The second derivative of L equals

d2 L L" a2r2sin2 (cc, - 0) ar
-T-1.cos((p - Or- a cos C9

cl(p2 R3

.126 13 2
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FIGURE 8-11

, .

and substituting (79) leads to the speciali values of the stationary points. Thus for

either case

(81) 1.,';

or

[-asin2(Ps + rcos((ps - 0) - 12;cos (Ps] ,

t a

where Rs and (Ps are the special values shown in either Figure 6..-10 or 8-11. At a.
forwdrd point, we , see from Figure 8-,11 that r Cos(r - (pD + 0) + a = RD cos(/r - (Iv);

consequently, rcos(cp - 0) R' cos 1,13, = a, d (69) reduces to

a2
(82D) Ln = cost (PD .

D

y On the other hand, at the reflection point, we see from Figure 8-10 that
-/

r cos((pL - 0) = a + RLcos(ii- - = a - RL cos cpi.; consequently

(82L)

LitL = [a(1 sine ) - 2RL cos (pi.]

2a cos(/r - cpL)
MI coi(ir --('L)] -

.

Similarly the stationary value of the phase function at a forward point. equals

(g3D) LD = RD + abos (PD = RD acos(ir (PD) = x .

Although we could eliminate RA. and (pi. 'in the reflected value, it is simpler to leak'

the original form

(83L) , LL = RL - acos(r 7 (pL ) ;
-. . 1

, ...
.

.here, (for a given value of r and 9) R1 and (PL are' determined as in Figure 8-10,given
. k . .,

i.e.,.by noting which ray (or the correspoilding value of y) of the incident wave fro,nt
NI,-.

D.
.

. . can reach r(0) via reflection in the cylindrical surface. -,,

4- . t a

4-

1

13 ,
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Finally, the required slowly varying pa this * ated at the" a
stationary points are given-by

::. -*-,_A,-,-- ` ---
; '41.. "::',. .., ,. , . .,,,_jr,-,
( dOSAV;44....i.4.4..,, ',.....,4M)ti'L'',..%i--

=,..,---.74.41,.

. -.--.
- -.1."''.?.:'4.:...-'

-

Substituting (5),into (76), miff then eritering (84), we obtain c ,. -k 44'

Ce ik1.3
(85) U = rsa cosy

L';
, r .te:011.t.

}C.Thus for the perfect reflecr 1, we enter the above D-values in (85) and obtain
the shadow forming wave

(86) UD = -eikx = -Ui .

Similarly, the L-values give the geometrical reflected wave

.,
a cos a '-,- ' '''(R La a c'''') ..

(87) 's _ e 9 a = 7 'II ,2 (R ? + c6s aY,,,.'L 2 --,

'1 .
which we considered in Sections 2 and 4 from a geometrical basis. In particular, the
flux density ratio F/F.0 of (4:14) is simply the present I ULI2 , and similarly thp

previous (4:18) corresponds to I Us 12 of (85); the present forms are richer in that
they make the ray path (1.,$)m well as the caustic (L'8') explicit. '

The correspondingFresnel approximations are obtained by using (55) instead of
(56)- We change variables-to 71-'1- a din (09 , Dq, L = acOs W D

n
L , and obtain

(88) llD = Ur, 300 - 30_d ,

,

rlf
kF_ (la Y)rx

where UD is given in (86); thtis (88) is simply (28) for the range x >
in terms Of Ili, of (874'wea liaVe"

so.
r

U = U [9(70 -,3(nJj',L L

(89)

0. Similarly,

2k(RL + Z cos a)

irRL a cos a (la - a sin a) , .a = - ,

. .% ,...
where '3 (ri) is the Fresnel-intedral -as in (10) ff.

i 94,9,

The field on caustics: Although supplgmented by phase considerations, equations (86)

and (87) are still results of geometrical optics which we could Construct piece-by-- .

piece from the speFial "laws" of the earlier sections: [1-19sives the directions, [ICL]
..,, .

-.`the. mapitudes, and the phases mai be'obtainpd from Newton's idea ,of pert dicity.tHowevgr we have now obtained these results gssengally from ale sin le idea of
, ,i 47 a
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t
periodic w

I

ayes that evolved through the work of Huygens, Young and Fresnel into

[YF]: U =fudi ,

which represents the scattered w ave'as an integral of elementary cylindrical waves

over a line or an arc (as in (3), (67), and,(75)), or of spherical' waves over a surface

or volume (as in (6:38)). Stanting with INT), we used mathematical procedures to

approximate the integral, in particular, we obtained the general sholl-wavelength

approximation (56), two of whose special cases are given by (86)
V
and (87). A side from

superseding the earlier.special laws, [YF] it applicable to many other phenomena than

covered by [W] and [KL], or by (56). We have already applied [YF] to obtain the
Fraunhofer,Fresnel, and Rayleigh-Born scattering approximations, more of which

are cover-led .by(56). We now apply [YF1 to supplement the short wavelength form (561
I

by determining the magnitude of the field on a caustic, the case L'; = L'h = 0 excluded

in (54) and in our discussion of [K1]. Thus, for example, the 'analog of (87) for reflec-

tion from the concave semicircle has a replaced by -a (see 4:15)), and does not hold

on the caustic VI = 0, RL = -(a/2)cos a. However, we do ndt require a special "law"

to obtain a non - singular form, but merely a more appropriate approximation of RN)

than Oven by (56).

On a caustic, both L' and °L" vanish; in addition, on a cusp of a caustic (where

the derivative of the equation of the caustic vanishes, since the curve changes direc-
tion) the third derivative L(3) must also vanish. Thus for such cases we canno
longer approximate L(x) by means of (54), i.e., we /bust keepladditional terms in the

Taylor' series in order to obtain the first correction to L(xs) . -/
/

Let us assume that the first n.- 1 derivatives of L at ,QCs vanish, and apprOxi--

mate L(x) by the Taylor polyno.mial o n-th order: --

An (n).

"(90)`eo"(90)` L(x) f;(xsy
(X r

L(x)) °' Ls (x - 7COn
Ls

n! dxn
x=xs

1

For this case, for infinite limits (corresponding essentially to (56)) , we haVe

-

(91) I =f G(x)e" cx) dx GseikLn f eik(x-xxF(nyn'dx .
...,_.

,
J,

If we introduce a new Variable y through yn = k(x ^:ks)n140/11. , then wd may re-

write (91) as .

(92) I= Gs e ikLn fccelln dy
kL(n) -co, .

where the remaining integral (the ."gamma function' integral) depends only'on n .

129
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^, ..--:.--c.n. ;a- C. , e . .. .
Using (92) instead of (56) in (76), we obtain .4

1,, , . t i
-193)] U c, eikLs (k)2 n.

. , .....-
......____...

where we have suppressed practicp.11y everything but the dependence on k, 27r/X Thus
away from a caustic, we have n = 2 and ITJI is independent of wavelength (e.g., as in

-'' (86) and (87)); this correspon
. to "true geometrical optics." For the line caustic of........,.., °

'-',:"the circular cylinder, we ha e n = 3, angsince R(rt) ,----,' a(P) ) on the caustic R = gos a,... 2_' _lye. Aga r911.(93) -atid, from dimensional considerations that U a- (ka)4; similarly)for a. .
cuSn--(et--=--...43rldr tile circle), we have n = 4, and U cc (ka)i. dere generallyloPsince. _ , i i

- -X-<-2`a 0V6We-that ki n increases with increasing n and approaches k a (at which
limit the phase is "completely" stationary). Thus U increases on caustics as the ,
yvaveleng15 A. de'C'r'ese; the field is always finite since the case of iero wavelength
(the implicit assuMption a conventional geometrical optics) is not physically realizable.

°

4

se

es
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9. Mathematical Model for Scattering.

nprevious sections we considered certain aspects of wave theory but based the
development on several supplementary "laws of nature." In the present section we tie
these ecial peistuIates together into a mathematical model for scattering.

ye Equation: We considered the plane-waves Icos(±kx - wt) , and, for convenience,

worked with the real part'of the norresponding expolientials:

en' iwt s eiikx e-iwt = f(x)g(t)

Equation (1) is a product of a function of x times efundtion t, each of Which
a second order differential equation:

(1) '

(2)

(3)

d2f(x) =--k2f(x) , k = --- 'dx2 X

t
dt2

hlt) 4.02 g(t) = -k2 v2 g(t) , = kv" = 2:2-rv- = 27ry
a

satisfies

As discussed previously, Nis the phase velocity of the wave generated by a source
vibrating at a frequency v , and X is the waveldn4h. the distance between crests.

(4)

the general form of (2) 'and (3) lat.

d2E(y) 4. 0 F (y) 0
dye

whose, generasolution equals

(5). C1 Coe Ppoth, C2 sin py ; or, 'equivalently, D1 + D2 Cil3t ,

where,the first constants (C1, C2) are lifiear,combinations of the second (D1, D2). Thus
*a;..in choosing the particular combinations that led to (1), we used some selection rules.

We discuss these rules subsequently.
. 416or

Now let us use the above to construct more general equations. Our attitude
_444,4. 1.;'s-'

the following. We know of phenomena that can be described b 'YAM PfUftinctiegsAuch f

as (1). -Let tie seek a general wave equation that yields (1) as well as more meral
wave forms. The mire_ general waves may well correspond to phenomena not cov.eied
by (1). -

;

Froin'(2) and .(3), we have

0

.
Subtracting one from the other, we obtain

(6) _2f (x) 1 d2g(t)
r erg.4

dx2 ire g(t) dt2

1 cl2f(x) k2 1 d2 g(t) k2 .."

f(x) dx2 v2 g(t) .dt2

6
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or equivalently
. *t ..

(7) (t) _d2f(x) _fps). d2 g(t)
0 ,

dx2 v2 dt2,
dWhere -d-x-

d operates only on f(x) , and TIE on g(t) . The present notation is awkward.
We would like to combine f(x)g(t) in a pingle form E(x, t) . To do so ancLpteserve the
idea that Ihe differentiations with respect to x and t ar'e independent, we introduce/

ex
.1the notation to represent differentiation with respect to x while t is-fixed

x- ...

partial differentiation; similarly for t. Thus, we rewrite (7) as

(8) 32.E(x,t) Ilk 32E(x,t) 32 32
E (3c, t) = 0 .

ax2 v2 at ax2 v2 at

This is called the wave equation. The wave functions of (1) are special solutions of
(8) corresponding to periodic waves.

We generalize (8) to two spatial dimensions x, y by introduCing an additional
32

operation into (8):0372

\ (9)
N - ax2 ay2 v2 at2

32 32 32.... E(x,y,,t) = 0 .

The plane waves elk' c°3"+ ikY sin luelhat we considered in Section 8 are solutions ofk Y`.1. \ , \ 32(9). Similarly for three spatial dimensions We introduce an additional operation '"''rform.... in (9). We write the general form as /7 az2

1 k.

. a2(10) 773 -
V2 at2

r%

\ Where

(11)

.
a2E(f, = v2 E

v2 at2

32 32 = 32

ax2 3y2 0z2

Cr ,
*

(which is also frequently written as A) is called Laplace's,pperitor.
401

We roak also recast (11) in polar coordinates r, 0, q). In particular, the elemen-,,
tary spherical wave that we considered previously.is the special solution of '(10) that
depends only on the magnitude r but is independent of 0 and q) . ThLsimpler equation
for the elementary spherical wave ,

4 (12) E(r, t)
elk'. -1(A

den be
32

obtained by comparison with (1) and (8). Thus if wekreplace E(x,t) by rE(r,t)

0X2 81'2
and by 32 we obtain the correscionding equation for (2):

(13) - I rE(r,t) = 0 .ar' v2 at2

'1 3 0132
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We may rewrite this directly in the form of (10):
';

ar ar at2rz
1 a 2 aE) 1 a2E

(14)

el

The general solution of (8) may be written

4(15) E(x, t) = F(vt-, x) + G(vt + x)

where F and G are arbitrary twice, erentiabie ftinativs. Similarly, the

solution of (13) is

1 4

-(16) rE(r, t) = F(vt - r) + G(vt4 r), .

The corresponding, solution for the equationef the line source in two dimensions and of

the general equation (10) cannot be expressed so simply. We mention the general

solutions only tp stress that the solutions corresponding to periodic waves are special

cases.

Let us now ignore practically everything that led us to the wave equation (10). We

accept (10) as fundamental and seek its periodic solutions. For completeness, we

repeat the definition5 of the fundamental parameters given in previous sections.
. -

The time-periodic waves we considered correspond to solutions having the product

form

(17) E(r, t) -;.f(i)g(t) .

. .

If we substitute (17) into (10), the "variables separate" in the sense that we obtain

d2goa
f a)

L v2 f v2 dt2

essentially as in (6). Singe the left hand side of (18) is a function only of r. , and the

right hand 'side only of t , each side must equal the same constant; call this constant

-k? . Thus (18) reduces to

(19)
d2 g(t) k2 v2

dt2 "
(20) V2f(1,-)ii lef(r)-=-0-`,

1-

where (20) is knoWn as HerOioltiteeclitittion.-t7
,,,

Equation (19) is the form (4) we considered previously: Its sdhitions 'a& the

periodic functipns; in,(5).TWitliiikirpylo;W;OrreVe-ilirity, we'pick

(21) gitY e wt'" - kv

to work with. In _equation (ie)`,..-v-i`feloity,: tte distance ad element of

the wave covers in unit time. From (El), we see that g(t) is periodic in t, i.e., if the

t
1

. ,*

= 1 3 9
7;4:4



time t changes by multiples of the constant T= 1, then g is unaltered:
co

/1(22) g(t) = g(t + mT) ; T - 2 1
, n = 1,2,3 '

LO V

Thus T. is the periodicity of the wave in time, and v (the frequency) is the numbe-vf
k has the same value in unit interval of time. The analog in space, the-

2 7TVwavelength X vT = co , is the distance covered by' arielement moving with velocity
v for a time T . 'But froth. (21), we have Y- = 1 . Consequently k = the rela-
tiontion betWeen the "separation constant" (the propagation factor.or_wave number) and
wavelength.

The space equation (20) is known as the reduced wave equation or'Helmholtz's
equation. The one dimensional case d2f(x).

+ k2 f(x) = 0 is given in (2), and the spe-
cial case of the spherically symmetrical ware is implicit in (14), i.e., -.

ddr2

2 (rf) k2rf = 0 , f = f(e) .

The above equations specify propagation of waves in a medium whose properties
are determined solely by v . For the periodic cases, once we fix the frequency factor
w, the corresponding wavelength in the medium is determined. If we are dealing with
several such media specified by different velocities vm ; m = 0, 1, , then we
obtain the same wave equations with v replaced by vm ; the corresponding reduced -
wave equations for frequency factor w involve km = v. = 2rTn To, make full use of the
earlier equations in v , we take v. = v = constant as a reference, and write

v -(23) v,, = - = 1 ,
Pm

-where Am is the relative index of refraction; consequently km = nmk Theyc7spond-
-..ing space equation for a medium specified by µ , is

-(24) -

e.g.,

(25)

F2 .1. 1.22 k2g(1: 0

2 + µ2 k)f(c) = 0dx

.for the one-dimensional case. If /I 'is independent of' x, then the solutions of (25); are
the forms (5) with p = tik .

Conditions on the Solution: All the problems we considered are described by functions
E(T)g(t) = E(1.)e-iwt, where Elf ) is a particular solution of the reduced wave equation .

[I] :. (s72 + n2k2)E(i) = 0

The particular soldionis determined by constraints that have been implicit in our
development. The constraints are of two kinds:

III): . restrictions on the solution at the scatterer's surface,

restrictions on the solution at large distances from the scatterer.
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ar0 .).
The additional'consiraints are nec Asary because the wave equation merely.-,..

describes the 1061 properties of the medium and how.s. wave travels front. point to
point. But what if th4 medium is discontinuous? .g.:, - '

..
4 {1}: suppoSe we have a glass of water and consider waves on the surface of

the waterlbounded by the unyielding rim of the glass; A
{2}: suppose we are in apdat on a very large lake and the boat is an obstacle

for anincoming wave?

Cases {1} and {2 } illustrate two essentially different kinds of wave problems we may
be concerned with.

In f-1--fr-diall:Cith a bounded medium: we are giv'en v, the shape of the boundary
%)

and constraints on the solution at-the boundary, and then to determine the\ , / . \ ,

forms and periods of the waves that can. be inaint 'neillin s h enclosed media. These\ .-- \ ,
are free vibration problems: the waves on a taut cl

,.
theslin, ,the waves on the stir-

.
face of a glass of water, tl sound waves in a closed 'Dm, the e ectromagnetic waves
in a metal cavity, etc., are illu trations, and analogous problems exist in the quantum
theory of atomic states.

r.

If the bounding surface is one that yik ds, then waves on the inside create waves
on the bounding surface, and they nay propaiate in a region external to the surface.

,

We may also set up vibrations on a surface and use the surface as a source of waves
for the external medium, e.g., a vibrating-drum hdad as a source of sound. All musi-,
cal instruments, strings, drums, pipes are examples of "vibrator-radiator" systems
for sound. (We have switched from talking about light to talking about sound and water
'waves; this is artly for convenience;, but also to stress the fact that as far as wave
physibs goes there are analOgous phenomena in all branches of science.)

In {2} we deal-with,a,bounded object that repiesepts an obstacle to a wave travel-
it in an essentially unbaded medium. We require conditions that tell us the shape
and size al the obstacle, whether its surface is penetrable by waves, and, if so, then.
what is the medium inside its surface. Such boundary conditions or transition condi-
tions specify the kind of discontinuity the obstacle represents in the imbedding
medium. Depending on the phenomena we seek to model, we may require boundary
Conditions such as

(lIa] E = 0 on surface

r

8EIlibl = 0 on surface8n ...
A

*here
* 8n is the rate of change of E along the norfnal at a point on the surface.

17- These conditions correspond to surfaces impenetrable waves. If the surfade is

ar



A

penetrable (partially transparent), then many phenomena correspond to the followinti.'
the waves outside the scatterer's surface travel in medium -1 and the yvave functions
satisfy (V2 + 41t2)Ei = 0; within the scatterer they travel in medlun-2 and satisfy
(V2+ 1./22 k2)E2 = 0 ; at the surface El and 'E2 are related by the transition conditions

3E1 3E2
Mc] El = E2 , an = A - ,

s.
where A is a supplementary physical constant. Thus in general, the wave problems
we consider are specified by two physical constants (or "physical parameters") 1.12/121

and A whose values must be assigned at the start.

Having [I] and [II], we complete the mathematical statement of the scattering
problem by conditions at large distances from the scatterer [III]. These specify that

.we seek a solution consisting of essentially two terms: one term corresponds to the
incident field, e.g.,'a plane wave

IC

Ei = elkx ,

,

4

which is the space part of eikx-"; the other term, say Es, corresponds to the outgoing
wave radiated by the obstacle in response to El . In (6:40) for scattering by a
tenuous sphere, we saw thatthe wave at large distances from the scatterer was the
product of a function of directions and the elementary outgoing wave'of a point source,
e ikr - cat

. Similarly, in (6:32) for scattering by a strip, the wave at large distances
eikr - iwt

was proportional to that of a-linft source . The corresponding wave surfaces
r

are symmetrical, and, in addition, We saNNY in SektonS 2 arid 5 that the eikonals core

responding to geometrical reflection from a semiciicle and hemisphere, although corn-

. plicaled in shape in the vicinity of the obstacle, became more and more symmetrical
with increasing distance. Similarly for a planar scatterer (6:17), the wave ei(k kl-wt)
is symmetrical in Ixl. Suppressing the time dependence e-i'''t , we summarize all
such cases by thestatement

ikr
PUN ^" .0; 'm = 1; 2, 3Es, gm as r

r(")/2

where r is measured from some point in the scatterer, and where g (called the
t scattering amplitude).,is independent of r. Thus at large distances from the scatterer

(r13 00), E. reduces tothe-elementary symmetrical wave times a function of angles.
The condition [Mb] is a consequence of the weaker Sommerfeld radiation condition

Limr(m" ikE = 0. as r co Mid of a'still weaker condition that the,ar sm .
integral over a sphere of radius r of the absolute square of the function in braces
approach zero as r ^ con The condition for r ^ co insures that we deal withoutward
radiation, and that the scatterer correspond,to a source of waves (instead of sink of

it-
Ns,0

- '
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waves, and also rules out free vibrations as in tip. Collectively we write the total
field'is'

eikr ,
( 'Um] , E = Es + E. ; Es = en ; Esm gm

r(rn-11)12 '
m = 1,2;3 ,

where i and s stand for incident and scattered respectively.

Eisuations [I], (II], and [III) ^Institute the mathematical model for scattering. They

replace all the, special princii we considered previously; they cover all the cases.

where the principles apply, and many additional ones as well. Ty6y incorporate the
essential gross physics of the effects of an obstacle ()Ole radiation from a source,
and the cumulative fruits of two thousand yeas., eAttion in providing a framework

of well-posed problems with unique solutions. In sunlmary,, the wave equatibn [I] de-

scribes the local properties of the meelia, thettrface -Zbnditions JII] take account of

conditionsobstacles (interfaces, transition regions), and .cthe onditions at large distances [III]

specify that the field consists of a wave (Es) ) from a primary source perturbed by a
wave (E3) outgoing from the, obstacle. We can now seek analytically the redistribution

of the radiation of a source arising from the presence of an obstacle.

Point Scatterer: As an elementary illustration let us consider the scattering of a
plane4vave en" by a small sphere of radius a for the boundary tonditionHIa), E = 0
at .r = a. For the general case of a sphere of arbitrary radius a wecould work with

the complete solution of [I] for A = / subject to [II13]. We would represent Ei and E.
in terms of angle-dependent functions and initially unknO;in constants, and then use

[Hal to determine the constants. However, the restriction a « X, or equivalently,

(26) ka 0
1* ,

simplifies the problem. From the geometry of Figure 9-1, the incident field elk''

ef

FIGURE 9-1

i ' .k

equals eika cc's 9 at the surface of the sphere; using the restriction (26), we have
eika,"' 9 P-, 1, so that we may work with the approximation

(27)' H Ei (a). = .

Thus the exciting field at the surface is independent of angles, and the correspo' tiding
scattered wave mist be similarrx independent of angles: Ea (r) is a solution,of
d2

dr2
(rE3) + k2TE5 = 0 , and the only one satisfying JIM) at large distances is

3

-4er r'



(28)
E 3 = C

eilcr

4

where C is a constant, At the surface of the scatterer r = a , we have

and consequently.the total field at r = a is approximately

"(29)
E (a) = E j (a) + E. (a) = 1

Applying the boundary condition E(a) = 0, we get

(30)
C = -a

-

The scattered wave for r > a is'thus

(31)
E, eikr .

C
'a

1-

&kr 1

r a

This corresponds physically, for example, to scattering of underwatef sound by a

small air-bUbble (an'exception to [11) of Section 7).

Slab Scatterer: As another example, let us considekr scattering of a plane wave by a
.

partially transparent slab as in Figure 9-2. The conditions on the problem are:

*(32)', dx2

d2 + k- Et = 0 , 1x1 > a ;

e.dx2 K2) E2 K ;
1x1 <,a ;d2

dEt dE2

(34) Et = .p2 , do = A do . lx1 = a .

a
(35) Et = Et E, : Et = e ,

7 (36)

From (35), we write

elm

E, = g+eikx ,

t,
tf_

s.-
ikx

g_e

x > a ;

Es es. geikixl as lxl. co .

4:1

E, = g_eikx , .< -a .

).

4.1

-a a

FIGURE 9-2
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From (33), we take the most general solution in the form

(37) E2 = ,b+eilCx Kx

We thus have four constants (g+, g_, b+, b_) to determine, and we do so by applying
the surface conditions (34).

At x = , we get
.

(38) e-fra b 'Ka
+ + b ei"-

a

(39) k (e-"a - gethx)'. AK (b+e-iKa - b_eiKa)

similarly', at x = +a.
-

(40)' b+e °Ca + b_e-iK)a = (1 + g+) e ia

(41) KA(b+elica - b_e-'1") = k(1 +-g+)ena

TEei we have four algebraic equations for the four unknowns.

Solving these, and introducing the

(42)

We obtain

(43) .

.04)

Z -1
Q z -w

KAZ=
k '

e-12/a (1 - e "Fa)= _.Q = R_ Q2 ei4Ka

(1 Q2)el(c -k)2a
T_ Q2 el4Ka

where R and T are called.the reflection and, transmission coefficients. The Corre-
sponding internal field is

4

(45)
kx cliefiC(2a-x)]

E2 = (1 - Q)ei(K-k)a
[e"

_ Q2 eima

Expanding the denominators in (43) and (44) enables us to interpret the solution in
terms of multiple reflections inside the slab.

1

If 'we are dealing with a single interface at x = 0 a's in Figure then (We

A

FIGURE 9-3'
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olin simply

(46) E1 = elk4 `Qe-"°'

E2 = (1 - coeilCx

The results.and all the above maybe generalized by inspection to an arbitrary
angle of incidence a as in Figure 9-4. Thus in equatiops (32) and (33) we may repface

i

' t

1 '

FIGURE 9-4

k2 by k2Cos2 a and K2 by K2cos2fl'and.obtain the same final functions' iri terms of

the new Constaiits -k cos a and K cos fl , e.g., (46) beL,mes

(48) e ibt cos a Qt e-ikx zi -1
'

icksosg,
Q' z, +1 t, Z ((cos a

e

,and (47) becomes ,, 0 4,
, ., .. . . -.,

;pC C 00
.0.

''' e : w A.

0 q't.. a i /./ '..j . tt . 0
< ..

We Clay now multiply (48)' and (49) by. the same tactor e ,, 0".a,,. This converts

,(48) to
-' 4

, l t

, ' r. i t. 0 ' Gi.. l'''
'

, .
. , t

. .-. -. t,
where gi (a) is a plane wave incident at an' angle a, and Ei( a) is its-Mirror im e* -

in the plane x = 0 . From (49), multiplication by e.",'Y Bina give , ......,i
1

i ici, _ nye. iKx cis., 13+ My stria'' i' i
,.

(51)

Uwe require that

452)

then (51) equals-

(6)

k sin a = Ksint3 , 1sincr tisinflk

-

xc.

,

cos 6+ ik y sin 13

146
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which is a plane wave traveling at an angle j8 . Equation (52), which we recognize as
"SneLlfs Law" [S], is thus an artifice for converting the solution of a one-dimensional
problem to the corresponding two-dimensional solution; it insures that corresponding.
wave fronts match at the surface.

Integral representations: In Sections 6 and 8 we used Huygens' principle in ordefto
represent the total scattered field as the integral of "wavelets" arising from elenien-
tary sources distributed,over a surface or throughout a volume. To round out the
previous intuitive disCussion we should indicate how such forms follow from'the
present mathematical model [Ik [II ], and If we had available a theorem of
Gauss (which relate, certain surface and volume integral forms) we could prove that
scattering functions Es; satisfying [I] and [IIIm] can be represented' in terms of ele-
mentary sources. H as

(54) E.ch = f [Hmodi 300.E(P) E(/5)0n
S

m I I dS(p)

where p is'a pint on a surface SO ) as in Figure 9- that encloses fhe scatterer but
excludes the observation point Is', and wher On --a T.; is the outward normal deriVa-

.

tive. The function EP) = Ei Cp. ) + .E ;(P ) , th total ield at 76 , and its normal deriv-
ative, are weighting factors for the surface distributi n of elementary sources
1-1,( I r - ) and. 8Hm which radiate from I; to -2; .

.1
r

FIGURE 9-5

The elementary sources are essentially those we worked with in earlier sections.
Thus, in'three-dimensions (i.e., if all three`space dimensions are signifiCant in the
prpblem), we, require a pOint source

, -
eikR

(55) H3 (ICH), 4/TR ' R = = - 4j2 + (y - 77)2 + (z - 02
P

44of

and in one-dimension, a planar source

eocR
(56) H1 (kR) = ilk '

141 It.
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1
In two-climenions, for argument kR-» 1, the' required line source approximates-4

23)2.
e 1kR

A,4
which is the form Re worked with previously; the fact that (57) holds only for large

-.values of the argument accounts for the restriction kR » 1 that we mentioned fpr the
strip and-cylinder,problems. For small values of .kR ,_the elementary line s014.

behaves quite differently:

ti

4gr''
1 z(58) H2 (kit) Tr In kR , l 06.

Its ex4apt relpresentatiorTtis given by

(59) H2(kT =

where Ho(1) (which is kriown as 'Hankers function of the first kind of order zero) is the
special solution of (20) for two-dimensions corresponding to angle independent out-
going waves, i.e.; it plays the same tole in two -dime i R

and elkixi play in
the other cases. If we specialize S('p) to the surfacef-tlie`bcatterer itself, then we
can use such surface conditiois as (III to obtain equations (integral equations) for the
unknown values of Es ( p) and NE, (P:).; for simple surfaces, the procedure is analo-
gous to that lice followed for the slab.'. .

Although we will not Prove (54), we will show how toobtain the approximate forms
we worked with in earlier sections. Thus if we specialize S('p) to the scatterer's
.surface and use the boundary condition (11131 that ant(T)) = 0 , we reduce (54) to

(60) Es (1) y -fEcoanfinki;-7)1)dS(p")

In p articular, in tWo-diffiensions and kfl. - >> 1 , we use (57) in (60) td,Cbtain

-. .(61)y ''' :E , ( 1) ^' ....\ irk J zt I) 1
e-iTrbik 12 f--, e iklr - P1

P n" ciS(13);° 13 = a 6 = il
rrF.-7--;51 p ' n '

' which is of the required, form IIIIcJ . If we knew the field E(p) on the scatterer's sur-.,,thee, we could obtain the scattered field Es (i; ) by integration. If we do not know the,

field (and it is only for very simple shapes that E($) is knOwn exactly), then we'may
seek heuristic physically motivated apprOximations.

,..---

)11 particular if the scatterer is very big compared to N avelength , then it is,
*.- iplausibleto, approximate Ea') by elementary geOmetricaI optics considerations.

Following essentially Kirchhoff, one approximates the total\fiekd E(p) on the "lilt'
side" of the sZtt. terer by twice the incident value El , and by- zero OD the "dark side.",.. ,Thus if we substitute

i.
,

,

(62) E(P) B 1 ( TO on lit side ; ' E(*(3), -^. 0. on dark side

t.

..
1`48
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(

row,:

into (61) we obtain the general case of the integrals Nye considered in Sections 6 and 8,
i.e., for the strip with dS(P) = tin and the circular cylinder with dS(P) = achp

From (54) we could also construct the volume integral of elementary scatterers
that we worked with previously for the case of a partially transparent sphere. First
we spebialize (54) to P on the scatterer and then use the transition conditions [Iic]
to replace the external surface fields Et(p) = E(k,b.) and ank('P) by the correspond-,
ing internal fields E(K,-,5) and AkE(K,T)) where K = kt4 is the'internal wave number.

rWe then uses the same theorem of Gauss to convert the resulting surface integral to an
integral over the volume of the scatterer. In particular for constantµ and A = 1,
we would obtain

(63) E. = (k2 K2)flirp(iti: i)E(K,P)dV('P)
.

where V is the volume of the scatterer. If we add Ei to both sides of (63) we obtain
an integral equation for E which can be solved for simple sha,pes. We will not prove
(63), but we will show how this rigorous result leads to the previous appro2runation
(6:38).

For tenulms scatterers in the Sense K2 = k2p2 k2, Rayleigh replaced the
unknown internal field E(p) in (644 by the incident wave:

(64) Ei (k, P) = ei"
. k

If we substitute 04) into (63) and specialize to three-dimensions by using (55), weti
obtain

k2 412 - 1) fE. j
1 e ik.dVa )

4 7 r I r -70

which is the more complete version of the form we worked with previouslyin (6:38)ff.
Equation (65) gives Airectly the result that the flux (1E312) is inversely proportional
to h4 for various scatterers whose length dimensions are small compared to h , and
was used by Rayleigh prior to [111] of Section 7. *

-,

It should be stressed that suchiapproximations as (62) and (64) are adequate only
for limiteet ranges of the parameters. Howeverovithin their linlitations, they provider
Neefdi and instructive explicit results for probleins that cannot be solved rig >rously.

O
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In concluding this chapter, we should reiterate that we have covered merely a
selected sequence of topics in wave physics. The wave equations that we-"backed into"

are, in general, generated in physics programs by operating on first order 'differential:
equations that relate the phyLcal observables regarded as basic within a particular
discipline, e.g., particle.yelocity and excess pressure in acoustics, electric and
magnetic intensities in optics, radio, etc. The wave function E We have dealt with
represents one of these different physical observables (or one of its Cartesian corn-

,.

ponents), and may also stand for the probability density function of quantum mechanics.

Similarly the media that we specified by an index of refraction ia and interface, condi-
tions represent quite different concepts in different disciplines, and involve differen)t
kinds of physical parameters, ilnplicit continuity reTnrements on appropriate phy4-
cally observable fields, etc. We have discussed neither the physics implicit in the
above nor in the much more complex question of sources and the generation of fields.
We began with let there be light, and followed a narrow thread of concepts.

,
Although we m ade "light" the theme for much of the development, we have not

covered an essential aspect that distinguishes wave models for light from the models
used for sound: light, and all electromagnetic waves,.must also be characterized by
polarization, this requires in general that we dealt with,vectbr wave functions with
amplitudes peipendicular to the direction of propagation instead of the scalar functioti
we have considered. However, our discussion of light was in no sense meant to be

comprehensive, and as stressed in the introduction of this chapter, there are many
phenomena involving light that are not described by a wave model at all. Iv illustrat-
ing different applications of calculus, we have used light as a vehicle for an introduc-
tion to wave physin, not only because we have many visual experiences to draW on,

but because the adequacy of,a wave model for such phenompoa was tar from olftious
to the early investigators (and not particularly obvious even to us.without some care-
ful observations). , For water waves, the appropriateness of the mattliernatiCaf model

VQ.

would have been clear froth the start, and even for sound waves the intuition leads
relatively directly from the visible waves on stringed instruments and an drum heads

, to wavesin air, Thus in discussing light, we could introduce key topics leading to the °-
development of the wave model essentlalty, in their historical order, and thereby indi-:

.
cate the, greater generality oPthe wave Model, as Well as the domains of applicability/I,

Hof the Earlier Special paws of nature" that are now, exhiBir as consequences. How-
sever, the initial reservation that "light" is neither wave nor particle, and that only

1

;certain classes of phenomena involving light are adequateWlescribed by a wave
model s ould not be lost sight of. Light is one of the most complex characters in the

i
s

inathem4ical physics.
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The preceding two chapters illustrate attempts at systematic 4proches to appli-
cations of mathematics in science. Chapter 2 considers simple equa Uns for growth
and competition that arise. again and again in superficially unrelated,c ntexts of nature,
it shows that phenomena and processes that occur in all the sciences ar linked by one

mathematical model. We select a narrow thread of mathematical method and follow
it through various sciences. Chapter 3 is quite different; there we follow Science as a
thread.. We select a narrow sequence of physical cpncepts leading from geometrical
optics through wave physics and exhibit various methods of the calculus that further

the development. \

Thus our two cha n.mat atics and science are very different. They
supplement each otheriONicating the ways that mathematics and science interact.
The first chapter follows alpathematics thread, the second a science thread, and the
two together may suggest the crossing threads of a fabric. 06 two threads intersect
at Rayleigh's theory for the color of the sky: in Chapter 2, it is a special case of a
general attenuation process; in Chapter 3, a special case of .a general scattering
process.

" One thread suggests that mathematics intersects every science. The other thread
suggests that every science intersects all of the mathematics. Together they mpy
suggest that the interactions of mathematics and science are profound indeed, These
av,e the -threads of the fabric of our universe, the structure of our perception of nature.
Mathematics and science are the very NI arp and woof of the universe our intellect has

created.
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